Constructing minimal spanning/Steiner trees with bounded path length

被引:0
|
作者
Univ of Southern California, Los Angeles, United States [1 ]
机构
来源
Integr VLSI J | / 1-2卷 / 137-163期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] ESTIMATING THE LENGTH OF MINIMAL SPANNING-TREES IN COMPRESSION OF FILES
    ERNVALL, J
    NEVALAINEN, O
    BIT, 1984, 24 (01): : 19 - 32
  • [22] Minimal spanning trees
    Schmerl, JH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (02) : 333 - 340
  • [24] A note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points
    Mandoiu, II
    Zelikovsky, AZ
    INFORMATION PROCESSING LETTERS, 2000, 75 (04) : 165 - 167
  • [25] Degree Bounded Spanning Trees
    Fujisawa, Jun
    Matsumura, Hajime
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2010, 26 (05) : 695 - 720
  • [26] Degree Bounded Spanning Trees
    Jun Fujisawa
    Hajime Matsumura
    Tomoki Yamashita
    Graphs and Combinatorics, 2010, 26 : 695 - 720
  • [27] An exact method for constructing minimal cost/minimal SRLG spanning trees over optical networks
    Craveirinha, Jose M. F.
    Climaco, Joao C. N.
    Martins, Lucia M. R. A.
    Pascoal, Marta M. B.
    TELECOMMUNICATION SYSTEMS, 2016, 62 (02) : 327 - 346
  • [28] An exact method for constructing minimal cost/minimal SRLG spanning trees over optical networks
    José M. F. Craveirinha
    João C. N. Clímaco
    Lúcia M. R. A. Martins
    Marta M. B. Pascoal
    Telecommunication Systems, 2016, 62 : 327 - 346
  • [29] MINIMAL PATH-LENGTH OF TREES WITH KNOWN FRINGE
    DEPRISCO, R
    PARLATI, G
    PERSIANO, G
    THEORETICAL COMPUTER SCIENCE, 1995, 143 (01) : 175 - 188
  • [30] Simplicial Spanning Trees in Random Steiner Complexes
    Ron Rosenthal
    Lior Tenenbaum
    Combinatorica, 2023, 43 : 613 - 650