A note on the MST heuristic for bounded edge-length Steiner trees with minimum number of Steiner points

被引:20
|
作者
Mandoiu, II [1 ]
Zelikovsky, AZ
机构
[1] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
[2] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
关键词
approximation algorithms; Steiner trees; MST heuristic; VLSI CAD; fixed wireless network design; algorithms;
D O I
10.1016/S0020-0190(00)00095-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We give a tight analysis of the MST heuristic recently introduced by G.-H. Lin and G. Xue for approximating the Steiner tree with minimum number of Steiner points and bounded edge-lengths. The approximation factor of the heuristic is shown to be one less than the MST number of the underlying space, defined as the maximum possible degree of a minimum-degree MST spanning points from the space. In particular, on instances drawn from the rectilinear (respectively Euclidean) plane, the MST heuristic is shown to have tight approximation factors of 3, respectively 4. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
下载
收藏
页码:165 / 167
页数:3
相关论文
共 25 条
  • [1] Steiner tree problem with minimum number of Steiner points and bounded edge-length
    Lin, GH
    Xue, GL
    INFORMATION PROCESSING LETTERS, 1999, 69 (02) : 53 - 57
  • [2] Approximations for Steiner Trees with Minimum Number of Steiner Points
    DONGHUI CHEN
    DING-ZHU DU
    XIAO-DONG HU
    GUO-HUI LIN
    LUSHENG WANG
    GUOLIANG XUE
    Journal of Global Optimization, 2000, 18 : 17 - 33
  • [3] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DH
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    THEORETICAL COMPUTER SCIENCE, 2001, 262 (1-2) : 83 - 99
  • [4] Approximations for Steiner trees with minimum number of Steiner points
    Chen, DG
    Du, DZ
    Hu, XD
    Lin, GH
    Wang, LS
    Xue, GL
    JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) : 17 - 33
  • [5] An efficient 3-approximation algorithm for the Steiner tree problem with the minimum number of Steiner points and bounded edge length
    Shin, Donghoon
    Choi, Sunghee
    PLOS ONE, 2023, 18 (11):
  • [6] Approximating Steiner Trees and Forests with Minimum Number of Steiner Points
    Cohen, Nachshon
    Nutov, Zeev
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2014, 2015, 8952 : 95 - 106
  • [7] Approximating Steiner trees and forests with minimum number of Steiner points
    Cohen, Nachshon
    Nutov, Zeev
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 98 : 53 - 64
  • [8] An improved algorithm for the Steiner tree problem with bounded edge-length
    Chen, Chi-Yeh
    Hsieh, Sun-Yuan
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2022, 123 : 20 - 36
  • [9] The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points
    Du, DZ
    Wang, LS
    Xu, BA
    COMPUTING AND COMBINATORICS, 2001, 2108 : 509 - 518
  • [10] On compatible triangulations with a minimum number of Steiner points
    Lubiw, Anna
    Mondal, Debajyoti
    THEORETICAL COMPUTER SCIENCE, 2020, 835 : 97 - 107