The Euclidean bottleneck Steiner tree and Steiner tree with minimum number of Steiner points

被引:0
|
作者
Du, DZ [1 ]
Wang, LS
Xu, BA
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Syst Sci, Beijing 100080, Peoples R China
来源
COMPUTING AND COMBINATORICS | 2001年 / 2108卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study variations of Steiner tree problem. Let P = {p(1), p(2), .... p(n)} be a set of n terminals in the Euclidean plane. For a positive integer k, the bottleneck Steiner tree problem (BSTP for short) is to find a Steiner tree with at most k Steiner points such that the length of the longest edges in the tree is minimized. For a positive constant R, the Steiner tree problem with minimum number of Steiner points (STP - MSP for short) asks for a Steiner tree such that each edge in the tree has length at most R and the number of Steiner points is minimized. In this paper, we give (1) a ratio-root3 + epsilon approximation algorithm for BSTP, where c is an arbitrary positive number; (2) a ratio-3 approximation algorithm for STP-MSP with running time O(n(3)); (3) a ratio-E approximation algorithm for STP-MSP.
引用
收藏
页码:509 / 518
页数:10
相关论文
共 50 条
  • [1] Bottleneck Steiner tree with bounded number of Steiner vertices
    Abu-Affash, A. Karim
    Carmi, Paz
    Katz, Matthew J.
    [J]. JOURNAL OF DISCRETE ALGORITHMS, 2015, 30 : 96 - 100
  • [2] The Euclidean Bottleneck Full Steiner Tree Problem
    Abu-Affash, A. Karim
    [J]. ALGORITHMICA, 2015, 71 (01) : 139 - 151
  • [3] The Euclidean Bottleneck Full Steiner Tree Problem
    A. Karim Abu-Affash
    [J]. Algorithmica, 2015, 71 : 139 - 151
  • [4] On the Euclidean Bottleneck Full Steiner Tree Problem
    Abu-Affash, A. Karim
    [J]. COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 433 - 439
  • [5] Steiner tree problem with minimum number of Steiner points and bounded edge-length
    Lin, GH
    Xue, GL
    [J]. INFORMATION PROCESSING LETTERS, 1999, 69 (02) : 53 - 57
  • [6] On Exact Solutions to the Euclidean Bottleneck Steiner Tree Problem
    Bae, Sang Won
    Lee, Chunseok
    Choi, Sunghee
    [J]. WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 105 - 116
  • [7] On the minimum number of Steiner points of constrained 1-line-fixed Steiner tree in the Euclidean plane R2
    Li, Jianping
    Zheng, Yujie
    Lichen, Junran
    Wang, Wencheng
    [J]. OPTIMIZATION LETTERS, 2021, 15 (02) : 669 - 683
  • [8] On exact solutions to the Euclidean bottleneck Steiner tree problem
    Bae, Sang Won
    Lee, Chunseok
    Choi, Sunghee
    [J]. INFORMATION PROCESSING LETTERS, 2010, 110 (16) : 672 - 678
  • [9] Approximation algorithm for solving the 1-line Steiner tree problem with minimum number of Steiner points
    Liu, Suding
    [J]. OPTIMIZATION LETTERS, 2024, 18 (06) : 1421 - 1435
  • [10] Approximations for Steiner Trees with Minimum Number of Steiner Points
    DONGHUI CHEN
    DING-ZHU DU
    XIAO-DONG HU
    GUO-HUI LIN
    LUSHENG WANG
    GUOLIANG XUE
    [J]. Journal of Global Optimization, 2000, 18 : 17 - 33