Constructing minimal spanning/Steiner trees with bounded path length

被引:0
|
作者
Univ of Southern California, Los Angeles, United States [1 ]
机构
来源
Integr VLSI J | / 1-2卷 / 137-163期
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Fixed topology Steiner trees and spanning forests
    Wang, LS
    Jia, XH
    THEORETICAL COMPUTER SCIENCE, 1999, 215 (1-2) : 359 - 370
  • [32] Simplicial Spanning Trees in Random Steiner Complexes
    Rosenthal, Ron
    Tenenbaum, Lior
    COMBINATORICA, 2023, 43 (03) : 613 - 650
  • [33] MINIMAL RATIO SPANNING TREES
    CHANDRASEKARAN, R
    NETWORKS, 1977, 7 (04) : 335 - 342
  • [34] Percolation and Minimal Spanning Trees
    Carol Bezuidenhout
    Geoffrey Grimmett
    Armin Löffler
    Journal of Statistical Physics, 1998, 92 : 1 - 34
  • [35] Percolation and minimal spanning trees
    Bezuidenhout, C
    Grimmett, G
    Loffler, A
    JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (1-2) : 1 - 34
  • [36] Minimum bounded degree spanning trees
    Goemans, Michel X.
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 273 - 282
  • [37] Spanning Trees with Bounded Total Excess
    Enomoto, Hikoe
    Ohnishi, Yukichika
    Ota, Katsuhiro
    ARS COMBINATORIA, 2011, 102 : 289 - 295
  • [38] Spanning trees with bounded degrees and leaves
    Kano, Mikio
    Yan, Zheng
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1583 - 1586
  • [39] Constructing spanning trees in augmented cubes
    Mane, S. A.
    Kandekar, S. A.
    Waphare, B. N.
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 122 : 188 - 194
  • [40] ISA[k] trees: a class of binary search trees with minimal or near minimal internal path length
    Abuali, Faris N.
    Wainwright, Roger L.
    Software - Practice and Experience, 1993, 23 (11) : 1267 - 1283