Drude weight of an interacting flat-band metal

被引:1
|
作者
Antebi, Ohad [1 ]
Mitscherling, Johannes [2 ]
Holder, Tobias [3 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
SUPERCONDUCTIVITY; INSULATOR;
D O I
10.1103/PhysRevB.110.L241111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flatband systems form a new class of materials that challenge the conventional wisdom of transport. The intrinsically strong electronic correlations combined with the vanishing kinetic energy scale suggest a sensitive dependence of transport properties on the flat band states and make interacting flat bands promising candidates for exotic quantum transport. Utilizing the Drude weight, we investigate the low-frequency spectral properties of the electrical conductivity within a controlled analytic treatment of the many-body response at temperatures above the bandwidth and the interaction strength and below the band gap. Focusing on this new transport regime, we demonstrate the potential of a quantum geometric approach for interacting systems and intermediate temperatures. The derived spectral weight yields unexplored four-point geometric contributions unrelated to the quantum metric, which questions the previously proposed projection methods. For long-ranged interactions, we show that the low-frequency spectral weight reduces to the variance of the Berry curvature.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Canonical pair condensation in a flat-band BCS superconductor
    Tempere, Jacques
    Huybrechts, Dolf
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (06):
  • [42] Enhanced correlations and superconductivity in weakly interacting partially flat-band systems: A determinantal quantum Monte Carlo study
    Huang, Edwin W.
    Vaezi, Mohammad-Sadegh
    Nussinov, Zohar
    Vaezi, Abolhassan
    PHYSICAL REVIEW B, 2019, 99 (23)
  • [43] Nodal nematic superconductivity in multiple flat-band systems
    Liu, Chao-Xing
    Bernevig, B. Andrei
    PHYSICAL REVIEW B, 2025, 111 (02)
  • [44] Flat-band ferromagnetism in the multilayer Lieb optical lattice
    Noda, Kazuto
    Inaba, Kensuke
    Yamashita, Makoto
    PHYSICAL REVIEW A, 2014, 90 (04):
  • [45] Flat-band optical phonons in twisted bilayer graphene
    Cappelluti, Emmanuele
    Silva-Guillen, Jose Angel
    Rostami, Habib
    Guinea, Francisco
    PHYSICAL REVIEW B, 2023, 108 (12)
  • [46] Quantum localized states in photonic flat-band lattices
    Rojas-Rojas, S.
    Morales-Inostroza, L.
    Vicencio, R. A.
    Delgado, A.
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [47] ON THE EVALUATION OF THE FLAT-BAND POTENTIAL FROM PHOTOCURRENT MEASUREMENTS
    DEAN, MH
    NEWMARK, AR
    STIMMING, U
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1988, 244 (1-2): : 307 - 310
  • [48] The Role of the Flat-Band Potential in Porous Silicon Formation
    Liu, D. Q.
    Blackwood, D. J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) : H909 - H911
  • [49] Design of flat-band AlGaAs heterojunction Bragg reflectors
    Yechuri, SS
    Shieh, TJB
    Johnson, RH
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (01) : 40 - 46
  • [50] Suppression of Nonequilibrium Quasiparticle Transport in Flat-Band Superconductors
    Pyykkonen, Ville A. J.
    Peotta, Sebastiano
    Torma, Paivi
    PHYSICAL REVIEW LETTERS, 2023, 130 (21)