Drude weight of an interacting flat-band metal

被引:1
|
作者
Antebi, Ohad [1 ]
Mitscherling, Johannes [2 ]
Holder, Tobias [3 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
SUPERCONDUCTIVITY; INSULATOR;
D O I
10.1103/PhysRevB.110.L241111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flatband systems form a new class of materials that challenge the conventional wisdom of transport. The intrinsically strong electronic correlations combined with the vanishing kinetic energy scale suggest a sensitive dependence of transport properties on the flat band states and make interacting flat bands promising candidates for exotic quantum transport. Utilizing the Drude weight, we investigate the low-frequency spectral properties of the electrical conductivity within a controlled analytic treatment of the many-body response at temperatures above the bandwidth and the interaction strength and below the band gap. Focusing on this new transport regime, we demonstrate the potential of a quantum geometric approach for interacting systems and intermediate temperatures. The derived spectral weight yields unexplored four-point geometric contributions unrelated to the quantum metric, which questions the previously proposed projection methods. For long-ranged interactions, we show that the low-frequency spectral weight reduces to the variance of the Berry curvature.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Construction of interacting flat-band models by molecular-orbital representation: Correlation functions, energy gap, and entanglement
    Mizoguchi, Tomonari
    Kuno, Yoshihito
    Hatsugai, Yasuhiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (02):
  • [32] Absence of a charge diffusion pole at finite energies in an exactly solvable interacting flat-band model in d dimensions
    Phillips, Philip W.
    Setty, Chandan
    Zhang, Shuyi
    PHYSICAL REVIEW B, 2018, 97 (19)
  • [33] Author Correction: Catalogue of flat-band stoichiometric materials
    Nicolas Regnault
    Yuanfeng Xu
    Ming-Rui Li
    Da-Shuai Ma
    Milena Jovanovic
    Ali Yazdani
    Stuart S. P. Parkin
    Claudia Felser
    Leslie M. Schoop
    N. Phuan Ong
    Robert J. Cava
    Luis Elcoro
    Zhi-Da Song
    B. Andrei Bernevig
    Nature, 2022, 607 (7920) : E20 - E20
  • [34] DETERMINATION OF FLAT-BAND POTENTIAL IN RUTILE BY ELECTROREFLECTION TECHNIQUE
    KRYKIN, MA
    TIMASHEV, SF
    SOVIET ELECTROCHEMISTRY, 1978, 14 (01): : 70 - 74
  • [35] Parity-time symmetry in a flat-band system
    Ge, Li
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [36] Flat-band ferromagnetism in extended Δ-chain Hubbard models
    Ichimura, M
    Kusakabe, K
    Watanabe, S
    Onogi, T
    PHYSICAL REVIEW B, 1998, 58 (15): : 9595 - 9598
  • [37] Flat-band light dynamics in Stub photonic lattices
    Bastián Real
    Camilo Cantillano
    Dany López-González
    Alexander Szameit
    Masashi Aono
    Makoto Naruse
    Song-Ju Kim
    Kai Wang
    Rodrigo A. Vicencio
    Scientific Reports, 7
  • [38] Exception point induced flat-band and waveguide laser
    Li, Xiao-xue
    Fan, Er-pan
    Wang, Zhang-xin
    Fang, Yun-Tuan
    OPTICAL AND QUANTUM ELECTRONICS, 2020, 52 (08)
  • [39] Low-energy behavior of strongly interacting bosons on a flat-band lattice above the critical filling factor
    Phillips, L. G.
    De Chiara, G.
    Oehberg, P.
    Valiente, M.
    PHYSICAL REVIEW B, 2015, 91 (05):
  • [40] Flat-band light dynamics in Stub photonic lattices
    Real, Bastian
    Cantillano, Camilo
    Lopez-Gonzalez, Dany
    Szameit, Alexander
    Aono, Masashi
    Naruse, Makoto
    Kim, Song-Ju
    Wang, Kai
    Vicencio, Rodrigo A.
    SCIENTIFIC REPORTS, 2017, 7