Drude weight of an interacting flat-band metal

被引:1
|
作者
Antebi, Ohad [1 ]
Mitscherling, Johannes [2 ]
Holder, Tobias [3 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
SUPERCONDUCTIVITY; INSULATOR;
D O I
10.1103/PhysRevB.110.L241111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flatband systems form a new class of materials that challenge the conventional wisdom of transport. The intrinsically strong electronic correlations combined with the vanishing kinetic energy scale suggest a sensitive dependence of transport properties on the flat band states and make interacting flat bands promising candidates for exotic quantum transport. Utilizing the Drude weight, we investigate the low-frequency spectral properties of the electrical conductivity within a controlled analytic treatment of the many-body response at temperatures above the bandwidth and the interaction strength and below the band gap. Focusing on this new transport regime, we demonstrate the potential of a quantum geometric approach for interacting systems and intermediate temperatures. The derived spectral weight yields unexplored four-point geometric contributions unrelated to the quantum metric, which questions the previously proposed projection methods. For long-ranged interactions, we show that the low-frequency spectral weight reduces to the variance of the Berry curvature.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Simple method to construct flat-band lattices
    Morales-Inostroza, Luis
    Vicencio, Rodrigo A.
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [22] Molecular Kondo effect in flat-band lattices
    Minh-Tien Tran
    Thuy Thi Nguyen
    PHYSICAL REVIEW B, 2018, 97 (15)
  • [23] Flat-band ferromagnetism in armchair graphene nanoribbons
    Lee, Yen-Chen
    Lin, Hsiu-Hau
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [24] Flat-band superconductivity in strained Dirac materials
    Kauppila, V. J.
    Aikebaier, F.
    Heikkila, T. T.
    PHYSICAL REVIEW B, 2016, 93 (21)
  • [25] Preformed Cooper pairs in flat-band semimetals
    Zyuzin, Alexander A.
    Zyuzin, A. Yu
    PHYSICAL REVIEW B, 2022, 106 (02)
  • [26] Flat-band ferromagnetism in quantum dot superlattices
    Tamura, H
    Shiraishi, K
    Kimura, T
    Takayanagi, H
    PHYSICAL REVIEW B, 2002, 65 (08) : 1 - 8
  • [27] Possible flat-band ferromagnetism in an organic polymer
    Arita, R
    Suwa, Y
    Kuroki, K
    Aoki, H
    POLYHEDRON, 2003, 22 (14-17) : 1883 - 1888
  • [28] Discrete flat-band solitons in the kagome lattice
    Vicencio, Rodrigo A.
    Johansson, Magnus
    PHYSICAL REVIEW A, 2013, 87 (06):
  • [29] Compact discrete breathers on flat-band networks
    Danieli, C.
    Maluckov, A.
    Flach, S.
    LOW TEMPERATURE PHYSICS, 2018, 44 (07) : 678 - 687
  • [30] Flat-band ferromagnetism in twisted bilayer graphene
    Pons, R.
    Mielke, A.
    Stauber, T.
    PHYSICAL REVIEW B, 2020, 102 (23)