Drude weight of an interacting flat-band metal

被引:1
|
作者
Antebi, Ohad [1 ]
Mitscherling, Johannes [2 ]
Holder, Tobias [3 ]
机构
[1] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-76100 Rehovot, Israel
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
SUPERCONDUCTIVITY; INSULATOR;
D O I
10.1103/PhysRevB.110.L241111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flatband systems form a new class of materials that challenge the conventional wisdom of transport. The intrinsically strong electronic correlations combined with the vanishing kinetic energy scale suggest a sensitive dependence of transport properties on the flat band states and make interacting flat bands promising candidates for exotic quantum transport. Utilizing the Drude weight, we investigate the low-frequency spectral properties of the electrical conductivity within a controlled analytic treatment of the many-body response at temperatures above the bandwidth and the interaction strength and below the band gap. Focusing on this new transport regime, we demonstrate the potential of a quantum geometric approach for interacting systems and intermediate temperatures. The derived spectral weight yields unexplored four-point geometric contributions unrelated to the quantum metric, which questions the previously proposed projection methods. For long-ranged interactions, we show that the low-frequency spectral weight reduces to the variance of the Berry curvature.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Excitation spectra of strongly interacting bosons in the flat-band Lieb lattice
    Grygiel, B.
    Patucha, K.
    PHYSICAL REVIEW B, 2022, 106 (22)
  • [2] Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets
    Xu, Pengtao
    Milstein, Tyler J.
    Mallouk, Thomas E.
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (18) : 11539 - 11547
  • [3] Flat-band plasmons in twisted bilayer transition metal dichalcogenides
    Kuang, Xueheng
    Zhan, Zhen
    Yuan, Shengjun
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [4] Photonic flat-band laser
    Longhi, Stefano
    OPTICS LETTERS, 2019, 44 (02) : 287 - 290
  • [5] Flat-band topology of magic angle graphene on a transition metal dichalcogenide
    Wang, Tianle
    Bultinck, Nick
    Zaletel, Michael P.
    PHYSICAL REVIEW B, 2020, 102 (23)
  • [6] Interacting Electrons in a Flat-Band System within the Generalized Kadanoff-Baym Ansatz
    Cosco, Francesco
    Tuovinen, Riku
    Lo Gullo, Nicolino
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2024, 261 (09):
  • [7] Computational Design of Flat-Band Material
    I. Hase
    T. Yanagisawa
    K. Kawashima
    Nanoscale Research Letters, 2018, 13
  • [8] Catalogue of flat-band stoichiometric materials
    Regnault, Nicolas
    Xu, Yuanfeng
    Li, Ming-Rui
    Ma, Da-Shuai
    Jovanovic, Milena
    Yazdani, Ali
    Parkin, Stuart S. P.
    Felser, Claudia
    Schoop, Leslie M.
    Ong, N. Phuan
    Cava, Robert J.
    Elcoro, Luis
    Song, Zhi-Da
    Bernevig, B. Andrei
    NATURE, 2022, 603 (7903) : 824 - +
  • [9] Superconducting transitions in flat-band systems
    Iglovikov, V. I.
    Hebert, F.
    Gremaud, B.
    Batrouni, G. G.
    Scalettar, R. T.
    PHYSICAL REVIEW B, 2014, 90 (09)
  • [10] Flat-band generator in two dimensions
    Maimaiti, Wulayimu
    Andreanov, Alexei
    Flach, Sergej
    PHYSICAL REVIEW B, 2021, 103 (16)