Artificial intelligence-enhanced solubility predictions of greenhouse gases in ionic liquids: A review

被引:0
|
作者
Kazmi, Bilal [1 ,3 ]
Taqvi, Syed Ali Ammar [2 ]
Juchelkov, Dagmar [3 ]
Li, Guoxuan [4 ]
Naqvi, Salman Raza [5 ]
机构
[1] Univ Karachi, Dept Appl Chem & Chem Technol, Karachi, Pakistan
[2] NED Univ Engn & Technol, Dept Chem Engn, Karachi, Pakistan
[3] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Dept Elect, 17 Listopadu 15-2172, Ostrava 70800, Czech Republic
[4] Qingdao Univ Sci & Technol, Coll Chem Engn, Zhengzhou Rd 53, Qingdao 266042, Peoples R China
[5] Karlstad Univ, Dept Engn & Chem Sci, Karlstad, Sweden
关键词
Artificial intelligence; Ionic liquid; Neural network; Deep learning; Acid gas capture; Solubility prediction; HYDROGEN-SULFIDE SOLUBILITY; CO2 EQUILIBRIUM ABSORPTION; CARBON-DIOXIDE SOLUBILITY; NEURAL-NETWORK; MODELS; MISCIBILITY; MIXTURES; PRESSURE;
D O I
10.1016/j.rineng.2024.103851
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Greenhouse gas emissions from human activities pose a significant threat to the ecosystem, causing climate change and ecological disruptions. Ionic liquids (ILs) show promise for gas separation and carbon capture, but predicting gas solubility in ILs is challenging due to limited data and complex thermodynamics. Artificial intelligence (AI) offers an innovative approach to improve the efficiency and accuracy of solubility predictions. This review analyzes recent advancements in AI-enabled solubility predictions, focusing on methodologies, models, and applications in gas separation and carbon capture. It examines artificial neural networks, deep learning models, and support vector machines for predicting solubility in ILs, and presents valuable results demonstrating the potential of these techniques. The study highlights AI's transformative power in understanding gas-IL interactions and inspiring environmentally friendly separation processes. It also discusses integrating AI-driven predictions with process modeling tools like Aspen Hysys and Aspen Plus, aiming to stimulate further research in gas separation technologies and pave the way for practical implementation.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases
    Muzammil, Muhammad Ali
    Javid, Saman
    Afridi, Azra Khan
    Siddineni, Rupini
    Shahabi, Mariam
    Haseeb, Muhammad
    Fariha, F. N. U.
    Kumar, Satesh
    Zaveri, Sahil
    Nashwan, Abdulqadir J.
    JOURNAL OF ELECTROCARDIOLOGY, 2024, 83 : 30 - 40
  • [42] SemAI: Semantic Artificial Intelligence-Enhanced DNA Storage for Internet of Things
    Wu, Wenfeng
    Xiang, Luping
    Liu, Qiang
    Yang, Kun
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (03): : 2725 - 2735
  • [43] Artificial Intelligence-Enhanced Metasurfaces for Instantaneous Measurements of Dispersive Refractive Index
    Badloe, Trevon
    Yang, Younghwan
    Lee, Seokho
    Jeon, Dongmin
    Youn, Jaeseung
    Kim, Dong Sung
    Rho, Junsuk
    ADVANCED SCIENCE, 2024, 11 (39)
  • [44] Artificial intelligence-enhanced seismic response prediction of reinforced concrete frames
    Luo, Huan
    Paal, Stephanie German
    ADVANCED ENGINEERING INFORMATICS, 2022, 52
  • [45] Solubility predictions through LSBoost for supercritical carbon dioxide in ionic liquids
    Zhang, Yun
    Xu, Xiaojie
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (47) : 20544 - 20567
  • [46] Artificial intelligence-enhanced intraoperative neurosurgical workflow: current knowledge and future perspectives
    Tariciotti, Leonardo
    Palmisciano, Paolo
    Giordano, Martina
    Remoli, Giulia
    Lacorte, Eleonora
    Bertani, Giulio
    Locatelli, Marco
    Dimeco, Francesco
    Caccavella, Valerio M.
    Prada, Francesco
    JOURNAL OF NEUROSURGICAL SCIENCES, 2022, 66 (02) : 139 - 150
  • [47] Impact of Artificial Intelligence-Enhanced OCT Software on Percutaneous Coronary Intervention Decisions
    Sibbald, Matthew
    Buccola, Jana
    Mitchell, Haley
    Pinilla, Natalia
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 82 (17) : B104 - B104
  • [48] Artificial intelligence-enhanced electrocardiography for early assessment of coronavirus disease 2019 severity
    Baek, Yong-Soo
    Jo, Yoonsu
    Lee, Sang-Chul
    Choi, Wonik
    Kim, Dae-Hyeok
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [49] Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems
    Haihua Wang
    Mingjian Zhou
    Xiaolong Jia
    Hualong Wei
    Zhenjie Hu
    Wei Li
    Qiumeng Chen
    Lei Wang
    Journal of Semiconductors, 2025, 46 (01) : 182 - 196
  • [50] Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives
    Vega, Lourdes F.
    Vilaseca, Oriol
    Llovell, Felix
    Andreu, Jordi S.
    FLUID PHASE EQUILIBRIA, 2010, 294 (1-2) : 15 - 30