SemAI: Semantic Artificial Intelligence-Enhanced DNA Storage for Internet of Things

被引:0
|
作者
Wu, Wenfeng [1 ]
Xiang, Luping [2 ,3 ]
Liu, Qiang [1 ,4 ]
Yang, Kun [2 ,3 ,5 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210008, Peoples R China
[3] Nanjing Univ Suzhou Campus, Sch Intelligent Software, Engn, Suzhou 215163, Peoples R China
[4] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324000, Zhejiang, Peoples R China
[5] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, England
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 03期
关键词
DNA; Semantics; Internet of Things; Decoding; Channel coding; Image coding; Sequential analysis; Data mining; Image reconstruction; Fault tolerant systems; Deep learning (DL); DNA storage; Internet of Things (IoT); large model; multireads; DIGITAL INFORMATION; ROBUST; CAPACITY;
D O I
10.1109/JIOT.2024.3477314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the wake of the swift evolution of technologies, such as the Internet of Things (IoT), the global data landscape is undergoing an exponential surge, propelling DNA storage into the spotlight as a prospective medium for contemporary cloud storage applications. This article introduces a semantic artificial intelligence-enhanced DNA storage (SemAI-DNA) paradigm, distinguishing itself from prevalent deep learning (DL)-based methodologies through two key modifications: 1) embedding a semantic extraction module at the encoding terminus, facilitating the meticulous encoding and storage of nuanced semantic information and 2) conceiving a forethoughtful multireads filtering model at the decoding terminus, leveraging the inherent multicopy propensity of DNA molecules to bolster the system fault tolerance, coupled with a strategically optimized decoder's architectural framework. Numerical results demonstrate the SemAI-DNA's efficacy, attaining 2.61 dB peak signal-to-noise ratio (PSNR) gain and 0.13 improvement in structural similarity index (SSIM) over conventional DL-based approaches.
引用
收藏
页码:2725 / 2735
页数:11
相关论文
共 50 条
  • [1] Impact of the Internet of Medical Things on Artificial Intelligence-enhanced medical imaging systems from 2019 to 2023
    Locharoenrat, Kitsakorn
    IMAGING SCIENCE JOURNAL, 2024,
  • [2] Artificial Intelligence-Enhanced Breast MRI
    Lo Gullo, Roberto
    Marcus, Eric
    Huayanay, Jorge
    Eskreis-Winkler, Sarah
    Thakur, Sunitha
    Teuwen, Jonas
    Pinker, Katja
    INVESTIGATIVE RADIOLOGY, 2024, 59 (03) : 230 - 242
  • [3] Artificial intelligence in Internet of things
    Ghosh, Ashish
    Chakraborty, Debasrita
    Law, Anwesha
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2018, 3 (04) : 208 - 218
  • [4] Artificial Intelligence-Enhanced UUV Actuator Control
    Wang, Zhiyu
    Sands, Timothy
    AI, 2023, 4 (01) : 270 - 288
  • [5] Artificial intelligence-enhanced echocardiography in the emergency department
    Stewart, Jonathon E.
    Goudie, Adrian
    Mukherjee, Ashes
    Dwivedi, Girish
    EMERGENCY MEDICINE AUSTRALASIA, 2021, 33 (06) : 1117 - 1120
  • [6] An edge intelligence-enhanced quantitative assessment model for implicit working gain under mobile internet of things
    Duan, Xiangshuai
    Song, Naiping
    Mo, Fu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (04) : 7548 - 7564
  • [7] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Siontis, Konstantinos C.
    Noseworthy, Peter A.
    Attia, Zachi I.
    Friedman, Paul A.
    NATURE REVIEWS CARDIOLOGY, 2021, 18 (07) : 465 - 478
  • [8] Artificial intelligence-enhanced electrocardiography in cardiovascular disease management
    Konstantinos C. Siontis
    Peter A. Noseworthy
    Zachi I. Attia
    Paul A. Friedman
    Nature Reviews Cardiology, 2021, 18 : 465 - 478
  • [9] Artificial Intelligence-Enhanced Electrocardiography for Prediction of Incident Hypertension
    Sau, Arunashis
    Barker, Joseph
    Pastika, Libor
    Sieliwonczyk, Ewa
    Patlatzoglou, Konstantinos
    Mcgurk, Kathryn A.
    Peters, Nicholas S.
    O'Regan, Declan P.
    Ware, James S.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    JAMA CARDIOLOGY, 2025, 10 (03) : 214 - 223
  • [10] Artificial Intelligence-Enhanced Echocardiography for Systolic Function Assessment
    Zhang, Zisang
    Zhu, Ye
    Liu, Manwei
    Zhang, Ziming
    Zhao, Yang
    Yang, Xin
    Xie, Mingxing
    Zhang, Li
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (10)