SemAI: Semantic Artificial Intelligence-Enhanced DNA Storage for Internet of Things

被引:0
|
作者
Wu, Wenfeng [1 ]
Xiang, Luping [2 ,3 ]
Liu, Qiang [1 ,4 ]
Yang, Kun [2 ,3 ,5 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210008, Peoples R China
[3] Nanjing Univ Suzhou Campus, Sch Intelligent Software, Engn, Suzhou 215163, Peoples R China
[4] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Quzhou 324000, Zhejiang, Peoples R China
[5] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, England
来源
IEEE INTERNET OF THINGS JOURNAL | 2025年 / 12卷 / 03期
关键词
DNA; Semantics; Internet of Things; Decoding; Channel coding; Image coding; Sequential analysis; Data mining; Image reconstruction; Fault tolerant systems; Deep learning (DL); DNA storage; Internet of Things (IoT); large model; multireads; DIGITAL INFORMATION; ROBUST; CAPACITY;
D O I
10.1109/JIOT.2024.3477314
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the wake of the swift evolution of technologies, such as the Internet of Things (IoT), the global data landscape is undergoing an exponential surge, propelling DNA storage into the spotlight as a prospective medium for contemporary cloud storage applications. This article introduces a semantic artificial intelligence-enhanced DNA storage (SemAI-DNA) paradigm, distinguishing itself from prevalent deep learning (DL)-based methodologies through two key modifications: 1) embedding a semantic extraction module at the encoding terminus, facilitating the meticulous encoding and storage of nuanced semantic information and 2) conceiving a forethoughtful multireads filtering model at the decoding terminus, leveraging the inherent multicopy propensity of DNA molecules to bolster the system fault tolerance, coupled with a strategically optimized decoder's architectural framework. Numerical results demonstrate the SemAI-DNA's efficacy, attaining 2.61 dB peak signal-to-noise ratio (PSNR) gain and 0.13 improvement in structural similarity index (SSIM) over conventional DL-based approaches.
引用
收藏
页码:2725 / 2735
页数:11
相关论文
共 50 条
  • [31] Artificial Intelligence and the Internet of Things in Industry 4.0
    Radanliev, Petar
    De Roure, David
    Nicolescu, Razvan
    Huth, Michael
    Santos, Omar
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2021, 3 (03) : 329 - 338
  • [32] Artificial Intelligence and the Internet of Things in Industry 4.0
    Petar Radanliev
    David De Roure
    Razvan Nicolescu
    Michael Huth
    Omar Santos
    CCF Transactions on Pervasive Computing and Interaction, 2021, 3 : 329 - 338
  • [33] The Internet of Things, Artificial Intelligence, Blockchain, and Professionalism
    Laplante, Phillip A.
    Amaba, Ben
    IT PROFESSIONAL, 2018, 20 (06) : 15 - 19
  • [34] Artificial Intelligence-Based Semantic Internet of Things in a User-Centric Smart City
    Guo, Kun
    Lu, Yueming
    Gao, Hui
    Cao, Ruohan
    SENSORS, 2018, 18 (05)
  • [35] Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease
    Yeh, Chi-Hsiao
    Tsai, Tsung-Hsien
    Chen, Chun-Hung
    Chou, Yi-Ju
    Mao, Chun-Tai
    Su, Tzu-Pei
    Yang, Ning-, I
    Lai, Chi-Chun
    Chen, Chien-Tzung
    Sytwu, Huey-Kang
    Tsai, Ting-Fen
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 278 - 286
  • [36] ARTIFICIAL INTELLIGENCE-ENHANCED ECG IDENTIFICATION OF PREVIOUSLY UNRECOGNIZED CARDIOVASCULAR DISEASES
    Yao, Xiaoxi
    Rushlow, David
    Inselman, Jonathan
    McCoy, Rozalina
    Thacher, Thomas
    Behnken, Emma
    Bernard, Matthew
    Rosas, Steven
    Akfaly, Abdulla
    Artika, Fnu
    Molling, Paul
    Krien, Joseph
    Foss, Randy
    Barry, Barbara
    Siontis, Konstantinos
    Kapa, Suraj
    Pellikka, Patricia
    Lopez-Jimenez, Francisco
    Attia, Zachi Itzhak
    Shah, Nilay
    Friedman, Paul
    Noseworthy, Peter
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 3044 - 3044
  • [37] Semantic Communication Networks Empowered Artificial Intelligence of Things
    Wang, Yuntao
    2024 IEEE ANNUAL CONGRESS ON ARTIFICIAL INTELLIGENCE OF THING, AIOT 2024, 2024, : 189 - 193
  • [38] Semantic Integration of Sensor Knowledge on Artificial Internet of Things
    Huang, Yikun
    Xue, Xingsi
    Jiang, Chao
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2020, 2020
  • [39] Artificial Intelligence-Enhanced Analysis of Genomic DNA Visualized with Nanoparticle-Tagged Peptides under Electron Microscopy
    Sundharbaabu, Priyannth Ramasami
    Chang, Junhyuck
    Kim, Yunchul
    Shim, Youmin
    Lee, Byoungsang
    Noh, Chanyoung
    Heo, Sujung
    Lee, Seung Seo
    Shim, Sang-Hee
    Lim, Kwang-i.
    Jo, Kyubong
    Lee, Jung Heon
    SMALL, 2024,
  • [40] Artificial intelligence-enhanced electrocardiogram for arrhythmogenic right ventricular cardiomyopathy detection
    Haq, Ikram U.
    Liu, Kan
    Giudicessi, John R.
    Siontis, Konstantinos C.
    Asirvatham, Samuel J.
    Attia, Zachi, I
    Ackerman, Michael J.
    Friedman, Paul A.
    Killu, Ammar M.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (02): : 192 - 194