Artificial intelligence-enhanced solubility predictions of greenhouse gases in ionic liquids: A review

被引:0
|
作者
Kazmi, Bilal [1 ,3 ]
Taqvi, Syed Ali Ammar [2 ]
Juchelkov, Dagmar [3 ]
Li, Guoxuan [4 ]
Naqvi, Salman Raza [5 ]
机构
[1] Univ Karachi, Dept Appl Chem & Chem Technol, Karachi, Pakistan
[2] NED Univ Engn & Technol, Dept Chem Engn, Karachi, Pakistan
[3] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Dept Elect, 17 Listopadu 15-2172, Ostrava 70800, Czech Republic
[4] Qingdao Univ Sci & Technol, Coll Chem Engn, Zhengzhou Rd 53, Qingdao 266042, Peoples R China
[5] Karlstad Univ, Dept Engn & Chem Sci, Karlstad, Sweden
关键词
Artificial intelligence; Ionic liquid; Neural network; Deep learning; Acid gas capture; Solubility prediction; HYDROGEN-SULFIDE SOLUBILITY; CO2 EQUILIBRIUM ABSORPTION; CARBON-DIOXIDE SOLUBILITY; NEURAL-NETWORK; MODELS; MISCIBILITY; MIXTURES; PRESSURE;
D O I
10.1016/j.rineng.2024.103851
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Greenhouse gas emissions from human activities pose a significant threat to the ecosystem, causing climate change and ecological disruptions. Ionic liquids (ILs) show promise for gas separation and carbon capture, but predicting gas solubility in ILs is challenging due to limited data and complex thermodynamics. Artificial intelligence (AI) offers an innovative approach to improve the efficiency and accuracy of solubility predictions. This review analyzes recent advancements in AI-enabled solubility predictions, focusing on methodologies, models, and applications in gas separation and carbon capture. It examines artificial neural networks, deep learning models, and support vector machines for predicting solubility in ILs, and presents valuable results demonstrating the potential of these techniques. The study highlights AI's transformative power in understanding gas-IL interactions and inspiring environmentally friendly separation processes. It also discusses integrating AI-driven predictions with process modeling tools like Aspen Hysys and Aspen Plus, aiming to stimulate further research in gas separation technologies and pave the way for practical implementation.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Artificial Intelligence-Enhanced Electrocardiogram for the Diagnosis of Cardiac Amyloidosis: A Systemic Review and Meta-analysis
    Khan, Laibah
    Noor, Isma
    Siddique, Amber
    Shakil, Saad
    Keen, Mahnoor
    Zafar, Bayan
    Farooqi, Maheera
    Essam, Nabeeha
    Khan, Muhammad Sami
    Siddiqi, Tariq Jamal
    Hall, Michael
    CIRCULATION, 2024, 150
  • [32] Description of the pVT behavior of ionic liquids and the solubility of gases in ionic liquids using an equation of state
    Wang, Tengfang
    Peng, Changjun
    Liu, Honglai
    Hu, Ying
    FLUID PHASE EQUILIBRIA, 2006, 250 (1-2) : 150 - 157
  • [33] SOLUBILITY OF GASES IN LIQUIDS - A CRITICAL-REVIEW
    WILHELM, E
    PURE AND APPLIED CHEMISTRY, 1985, 57 (02) : 303 - 322
  • [34] Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids
    Sosa, Julio E.
    Ribeiro, Rui P. P. L.
    Castro, Paulo J.
    Mota, Jose P. B.
    Araujo, Joao M. M.
    Pereiro, Ana B.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (45) : 20769 - 20778
  • [35] Ionic Liquids Can Enable the Recycling of Fluorinated Greenhouse Gases
    Lepre, Luiz Fernando
    Andre, Dune
    Denis-Quanquin, Sandrine
    Gautier, Arnaud
    Padua, Agilio A. H.
    Gomes, Margarida Costa
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (19) : 16900 - 16906
  • [36] The Solubility of Gases in Ionic Liquids: A Chemoinformatic Predictive and Interpretable Approach
    Carrera, Goncalo V. S. M.
    Ines, Joao
    Bernardes, Carlos E. S.
    Klimenko, Kyrylo
    Shimizu, Karina
    Lopes, Jose N. Canongia
    CHEMPHYSCHEM, 2021, 22 (21) : 2190 - 2200
  • [37] Solubility of gases in ionic liquids using PHTC equation of state
    Akbari, Falamarz
    ALmutairi, Faisal Dahi
    Alavianmehr, Mohammad Mehdi
    JOURNAL OF MOLECULAR LIQUIDS, 2019, 276 : 553 - 561
  • [38] Artificial intelligence-enhanced electrocardiography improves the detection of coronary artery disease
    Yeh, Chi-Hsiao
    Tsai, Tsung-Hsien
    Chen, Chun-Hung
    Chou, Yi-Ju
    Mao, Chun-Tai
    Su, Tzu-Pei
    Yang, Ning-, I
    Lai, Chi-Chun
    Chen, Chien-Tzung
    Sytwu, Huey-Kang
    Tsai, Ting-Fen
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 278 - 286
  • [39] ARTIFICIAL INTELLIGENCE-ENHANCED ECG IDENTIFICATION OF PREVIOUSLY UNRECOGNIZED CARDIOVASCULAR DISEASES
    Yao, Xiaoxi
    Rushlow, David
    Inselman, Jonathan
    McCoy, Rozalina
    Thacher, Thomas
    Behnken, Emma
    Bernard, Matthew
    Rosas, Steven
    Akfaly, Abdulla
    Artika, Fnu
    Molling, Paul
    Krien, Joseph
    Foss, Randy
    Barry, Barbara
    Siontis, Konstantinos
    Kapa, Suraj
    Pellikka, Patricia
    Lopez-Jimenez, Francisco
    Attia, Zachi Itzhak
    Shah, Nilay
    Friedman, Paul
    Noseworthy, Peter
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 3044 - 3044
  • [40] Artificial intelligence-enhanced electrocardiogram for arrhythmogenic right ventricular cardiomyopathy detection
    Haq, Ikram U.
    Liu, Kan
    Giudicessi, John R.
    Siontis, Konstantinos C.
    Asirvatham, Samuel J.
    Attia, Zachi, I
    Ackerman, Michael J.
    Friedman, Paul A.
    Killu, Ammar M.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (02): : 192 - 194