Corporate risk stratification through an interpretable autoencoder-based model

被引:0
|
作者
Giuliani, Alessandro [1 ]
Savona, Roberto [2 ]
Carta, Salvatore [1 ]
Addari, Gianmarco [3 ]
Podda, Alessandro Sebastian [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Palazzo Sci,Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Brescia, Dept Econ & Management, Via San Faustino 74-B, I-25122 Brescia, Italy
[3] VisioScientiae Srl, Via San Tommaso Aquino 20, I-09134 Cagliari, Italy
关键词
Deep learning; Autoencoder; Balance sheets; Corporate risk; Financial sustainability; FINANCIAL RATIOS; PREDICTION;
D O I
10.1016/j.cor.2024.106884
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this manuscript, we propose an innovative early warning Machine Learning-based model to identify potential threats to financial sustainability for non-financial companies. Unlike most state-of-the-art tools, whose outcomes are often difficult to understand even for experts, our model provides an easily interpretable visualization of balance sheets, projecting each company in a bi-dimensional space according to an autoencoder-based dimensionality reduction matched with a Nearest-Neighbor-based default density estimation. In the resulting space, the distress zones, where the default intensity is high, appear as homogeneous clusters directly identified. Our empirical experiments provide evidence of the interpretability, forecasting ability, and robustness of the bi-dimensional space.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Autoencoder-based identification of predictors of Indian monsoon
    Moumita Saha
    Pabitra Mitra
    Ravi S. Nanjundiah
    Meteorology and Atmospheric Physics, 2016, 128 : 613 - 628
  • [42] Autoencoder-based Fault Diagnosis for Grinding System
    Qu Xing-yu
    Zeng Peng
    Fu Dong-dong
    Xu Chengcheng
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 3867 - 3872
  • [43] An Autoencoder-Based Solution for IQ Constellation Analysis
    Ruiz, Marc
    Morales, Javier
    Sequeira, Diogo
    Velasco, Luis
    2021 EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2021,
  • [44] Autoencoder-based intra prediction with auxiliary feature
    Xu, Luhang
    Yu, Yue
    Yu, Haoping
    Wang, Dong
    2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
  • [45] Autoencoder-based myoelectric controller for prosthetic hands
    Portnova-Fahreeva, Alexandra A.
    Rizzoglio, Fabio
    Mussa-Ivaldi, Ferdinando A.
    Rombokas, Eric
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [46] Autoencoder-based identification of predictors of Indian monsoon
    Saha, Moumita
    Mitra, Pabitra
    Nanjundiah, Ravi S.
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2016, 128 (05) : 613 - 628
  • [47] Autoencoder-based Data Augmentation for Deepfake Detection
    Stanciu, Dan-Cristian
    Ionescu, Bogdan
    PROCEEDINGS OF THE 2ND ACM INTERNATIONAL WORKSHOP ON MULTIMEDIA AI AGAINST DISCRIMINATION, MAD 2023, 2023, : 19 - 27
  • [48] Autoencoder-Based Gradient Compression for Distributed Training
    Abrahamyan, Lusine
    Chen, Yiming
    Bekoulis, Giannis
    Deligiannis, Nikos
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 2179 - 2183
  • [49] Graph autoencoder-based unsupervised outlier detection
    Du, Xusheng
    Yu, Jiong
    Chu, Zheng
    Jin, Lina
    Chen, Jiaying
    INFORMATION SCIENCES, 2022, 608 : 532 - 550
  • [50] Astral: An Autoencoder-Based Model for Pedestrian Trajectory Prediction of Variable-Length
    Diao, Yupeng
    Su, Yiteng
    Zeng, Ximu
    Chen, Xu
    Liu, Shuncheng
    Su, Han
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS. DASFAA 2022 INTERNATIONAL WORKSHOPS, 2022, 13248 : 214 - 228