Corporate risk stratification through an interpretable autoencoder-based model

被引:0
|
作者
Giuliani, Alessandro [1 ]
Savona, Roberto [2 ]
Carta, Salvatore [1 ]
Addari, Gianmarco [3 ]
Podda, Alessandro Sebastian [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Palazzo Sci,Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Brescia, Dept Econ & Management, Via San Faustino 74-B, I-25122 Brescia, Italy
[3] VisioScientiae Srl, Via San Tommaso Aquino 20, I-09134 Cagliari, Italy
关键词
Deep learning; Autoencoder; Balance sheets; Corporate risk; Financial sustainability; FINANCIAL RATIOS; PREDICTION;
D O I
10.1016/j.cor.2024.106884
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this manuscript, we propose an innovative early warning Machine Learning-based model to identify potential threats to financial sustainability for non-financial companies. Unlike most state-of-the-art tools, whose outcomes are often difficult to understand even for experts, our model provides an easily interpretable visualization of balance sheets, projecting each company in a bi-dimensional space according to an autoencoder-based dimensionality reduction matched with a Nearest-Neighbor-based default density estimation. In the resulting space, the distress zones, where the default intensity is high, appear as homogeneous clusters directly identified. Our empirical experiments provide evidence of the interpretability, forecasting ability, and robustness of the bi-dimensional space.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Single-image splicing localization through autoencoder-based anomaly detection
    Cozzolino, Davide
    Verdoliva, Luisa
    2016 8TH IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS 2016), 2016,
  • [32] Autoencoder-Based Unequal Error Protection Codes
    Ninkovic, Vukan
    Vukobratovic, Dejan
    Haeger, Christian
    Wymeersch, Henk
    Amat, Alexandre Graell i
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (11) : 3575 - 3579
  • [33] Autoencoder-based joint image compression and encryption
    Wang, Benxuan
    Lo, Kwok-Tung
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2024, 80
  • [34] Autoencoder-Based Prediction of ICU Clinical Codes
    Yordanov, Tsvetan R.
    Abu-Hanna, Ameen
    Ravelli, Anita C. J.
    Vagliano, Iacopo
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2023, 2023, 13897 : 57 - 62
  • [35] A Deep Autoencoder-Based Knowledge Transfer Approach
    Tirumala, Sreenivas Sremath
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA ENGINEERING, 2018, 9 : 277 - 284
  • [36] On the Performance of Autoencoder-Based Space Optical Communications
    El-Fikky, Abd El-Rahman A.
    Rezki, Zouheir
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1466 - 1471
  • [37] Denoising Autoencoder-Based Language Feature Compensation
    Miao X.
    Xu J.
    Wang J.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (05): : 1082 - 1091
  • [38] Autoencoder-Based Optical Wireless Communications Systems
    Soltani, Morteza
    Fatnassi, Wael
    Aboutaleb, Ahmed
    Rezki, Zouheir
    Bhuyan, Arup
    Titus, Paul
    2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [39] Autoencoder-based Communications with Reconfigurable Intelligent Surfaces
    Erpek, Tugba
    Sagduyu, Yalin E.
    Alkhateeb, Ahmed
    Yener, Aylin
    2021 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (DYSPAN), 2021, : 242 - 247
  • [40] DeepStream: Autoencoder-Based Stream Temporal Clustering
    Harush, Shimon
    Meidan, Yair
    Shabtai, Asaf
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 445 - 448