Corporate risk stratification through an interpretable autoencoder-based model

被引:0
|
作者
Giuliani, Alessandro [1 ]
Savona, Roberto [2 ]
Carta, Salvatore [1 ]
Addari, Gianmarco [3 ]
Podda, Alessandro Sebastian [1 ]
机构
[1] Univ Cagliari, Dept Math & Comp Sci, Palazzo Sci,Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Brescia, Dept Econ & Management, Via San Faustino 74-B, I-25122 Brescia, Italy
[3] VisioScientiae Srl, Via San Tommaso Aquino 20, I-09134 Cagliari, Italy
关键词
Deep learning; Autoencoder; Balance sheets; Corporate risk; Financial sustainability; FINANCIAL RATIOS; PREDICTION;
D O I
10.1016/j.cor.2024.106884
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this manuscript, we propose an innovative early warning Machine Learning-based model to identify potential threats to financial sustainability for non-financial companies. Unlike most state-of-the-art tools, whose outcomes are often difficult to understand even for experts, our model provides an easily interpretable visualization of balance sheets, projecting each company in a bi-dimensional space according to an autoencoder-based dimensionality reduction matched with a Nearest-Neighbor-based default density estimation. In the resulting space, the distress zones, where the default intensity is high, appear as homogeneous clusters directly identified. Our empirical experiments provide evidence of the interpretability, forecasting ability, and robustness of the bi-dimensional space.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] An autoencoder-based snow drought index
    Koya, Sinan Rasiya
    Kar, Kanak Kanti
    Srivastava, Shivendra
    Tadesse, Tsegaye
    Svoboda, Mark
    Roy, Tirthankar
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [22] An autoencoder-based spectral clustering algorithm
    Li, Xinning
    Zhao, Xiaoxiao
    Chu, Derun
    Zhou, Zhiping
    SOFT COMPUTING, 2020, 24 (03) : 1661 - 1671
  • [23] Autoencoder-based holographic image restoration
    Shimobaba, Tomoyoshi
    Endo, Yutaka
    Hirayama, Ryuji
    Nagahama, Yuki
    Takahashi, Takayuki
    Nishitsuji, Takashi
    Kakue, Takashi
    Shiraki, Atsushi
    Takada, Naoki
    Masuda, Nobuyuki
    Ito, Tomoyoshi
    APPLIED OPTICS, 2017, 56 (13) : F27 - F30
  • [24] Deep Learning Autoencoder-based Compression for Current Source Model Waveforms
    Raslan, Waseem
    Ismail, Yehea
    2021 28TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS, AND SYSTEMS (IEEE ICECS 2021), 2021,
  • [25] An autoencoder-based stacked LSTM transfer learning model for EC forecasting
    Muhammad, Abdullahi Uwaisu
    Djigal, Hamza
    Muazu, Tasiu
    Adam, Jibril Muhammad
    Ba, Abdoul Fatakhou
    Dabai, Umar Sani
    Tijjani, Sani
    Yahaya, Muhammad Sabo
    Ashiru, Aliyu
    Kumshe, Umar Muhammad Mustapha
    Aliyu, Saddam
    Richard, Faruwa Ajibola
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3369 - 3385
  • [26] Fighting TLS Attacks: An Autoencoder-Based Model for Heartbleed Attack Detection
    Berbecaru, Diana Gratiela
    Giannuzzi, Stefano
    INTELLIGENT DISTRIBUTED COMPUTING XVI, IDC 2023, 2024, 1138 : 40 - 54
  • [27] AutoAt: A deep autoencoder-based classification model for supervised authorship attribution
    Briciu, Anamaria
    Czibula, Gabriela
    Lupea, Mihaiela
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 397 - 406
  • [28] Automatically Estimate Clusters in Autoencoder-based Clustering Model for Anomaly Detection
    Van Quan Nguyen
    Viet Hung Nguyen
    Nhien-An Le Khac
    Van Loi Cao
    2021 RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF 2021), 2021, : 198 - 203
  • [29] An autoencoder-based stacked LSTM transfer learning model for EC forecasting
    Abdullahi Uwaisu Muhammad
    Hamza Djigal
    Tasiu Muazu
    Jibril Muhammad Adam
    Abdoul Fatakhou Ba
    Umar Sani Dabai
    Sani Tijjani
    Muhammad Sabo Yahaya
    Aliyu Ashiru
    Umar Muhammad Mustapha Kumshe
    Saddam Aliyu
    Faruwa Ajibola Richard
    Earth Science Informatics, 2023, 16 : 3369 - 3385
  • [30] Anomaly Detection Through Graph Autoencoder-Based Learning of Screenshot Image Logs
    Ohkawa, Yuki
    Nakanishi, Takafumi
    18TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC 2024, 2024, : 65 - 68