Pyteomics - A python framework for exploratory data analysis and rapid software prototyping in proteomics

被引:0
|
作者
机构
[1] [1,2,Goloborodko, Anton A.
[2] 2,Levitsky, Lev I.
[3] 2,Ivanov, Mark V.
[4] 2,Gorshkov, Mikhail V.
来源
Gorshkov, M.V. (gorshkov@chph.ras.ru) | 1600年 / Springer Science and Business Media, LLC卷 / 24期
关键词
Pyteomics is a cross-platform; open-source [!text type='Python']Python[!/text] library providing a rich set of tools for MS-based proteomics. It provides modules for reading LC-MS/MS data; search engine output; protein sequence databases; theoretical prediction of retention times; electrochemical properties of polypeptides; mass and m/z calculations; and sequence parsing. Pyteomics is available under Apache license; release versions are available at the [!text type='Python']Python[!/text] Package Index http://pypi.[!text type='python']python[!/text]. org/pyteomics; the source code repository at http://hg.theorchromo.ru/pyteomics; documentation at http://packages.[!text type='python']python[!/text].org/pyteomics. Pyteomics.biolccc documentation is available at http://packages.[!text type='python']python[!/text].org/pyteomics.biolccc/. Questions on installation and usage can be addressed to pyteomics mailing list: pyteomics@googlegroups.com [Figure not available: see fulltext.] © 2013 American Society for Mass Spectrometry;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [11] Segmenting with big data analytics and Python']Python: A quantitative exploratory analysis of household savings
    Cuomo, Maria Teresa
    Tortora, Debora
    Colosimo, Ivan
    Celsi, Lorenzo Ricciardi
    Genovino, Cinzia
    Festa, Giuseppe
    La Rocca, Michele
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2023, 191
  • [12] TOWARDS AN OPEN SOURCE PYTHON']PYTHON LIBRARY FOR AUTOMATED EXPLORATORY SPATIAL DATA ANALYSIS
    de Kock, Nicholas
    Rautenbach, Victoria
    Fabris-Rotelli, Inger
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 43-B4 : 91 - 98
  • [13] MSPypeline: a python']python package for streamlined data analysis of mass spectrometry-based proteomics
    Heming, Simon
    Hansen, Pauline
    Vlasov, Artyom
    Schwoerer, Florian
    Schaumann, Stephen
    Frolovaite, Paulina
    Lehmann, Wolf-Dieter
    Timmer, Jens
    Schilling, Marcel
    Helm, Barbara
    Klingmueller, Ursula
    Bateman, Alex
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [14] A software framework for data analysis
    Kraetzig, Markus
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) : 618 - 634
  • [15] Thermal sensitivity analysis for the 119 PBGA - A framework for rapid prototyping
    Mulgaonker, S
    Berg, HM
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY PART A, 1996, 19 (01): : 66 - 75
  • [16] Thermal sensitivity analysis for the 119 PBGA - a framework for rapid prototyping
    Motorola, Inc, Austin, United States
    IEEE Trans Compon Packag Manuf Technol Part A, 1 (66-75):
  • [17] Concurrent software architectures for exploratory data analysis
    Staric, Anze
    Demsar, Janez
    Zupan, Blaz
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 5 (04) : 165 - 180
  • [18] SIERA - A UNIFIED FRAMEWORK FOR RAPID-PROTOTYPING OF SYSTEM-LEVEL HARDWARE AND SOFTWARE
    SRIVASTAVA, MB
    BRODERSEN, RW
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1995, 14 (06) : 676 - 693
  • [19] CHEMOSTAT: EXPLORATORY MULTIVARIATE DATA ANALYSIS SOFTWARE
    Helfer, Gilson A.
    Bock, Fernanda
    Marder, Luciano
    Furtado, Joao C.
    da Costa, Adilson B.
    Ferrao, Marco F.
    QUIMICA NOVA, 2015, 38 (04): : 575 - 579
  • [20] A Python']Python library for exploratory data analysis on twitter data based on tokens and aggregated origin-destination information
    Graff, Mario
    Moctezuma, Daniela
    Miranda-Jimenez, Sabino
    Tellez, Eric S.
    COMPUTERS & GEOSCIENCES, 2022, 159