Pyteomics - A python framework for exploratory data analysis and rapid software prototyping in proteomics

被引:0
|
作者
机构
[1] [1,2,Goloborodko, Anton A.
[2] 2,Levitsky, Lev I.
[3] 2,Ivanov, Mark V.
[4] 2,Gorshkov, Mikhail V.
来源
Gorshkov, M.V. (gorshkov@chph.ras.ru) | 1600年 / Springer Science and Business Media, LLC卷 / 24期
关键词
Pyteomics is a cross-platform; open-source [!text type='Python']Python[!/text] library providing a rich set of tools for MS-based proteomics. It provides modules for reading LC-MS/MS data; search engine output; protein sequence databases; theoretical prediction of retention times; electrochemical properties of polypeptides; mass and m/z calculations; and sequence parsing. Pyteomics is available under Apache license; release versions are available at the [!text type='Python']Python[!/text] Package Index http://pypi.[!text type='python']python[!/text]. org/pyteomics; the source code repository at http://hg.theorchromo.ru/pyteomics; documentation at http://packages.[!text type='python']python[!/text].org/pyteomics. Pyteomics.biolccc documentation is available at http://packages.[!text type='python']python[!/text].org/pyteomics.biolccc/. Questions on installation and usage can be addressed to pyteomics mailing list: pyteomics@googlegroups.com [Figure not available: see fulltext.] © 2013 American Society for Mass Spectrometry;
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
相关论文
共 50 条
  • [21] Rapid Analysis of Small Angle X-ray Scattering Data in Python']Python
    Buchholz, Christine
    Adkins, Ruby
    Berndsen, Christopher
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (03) : S602 - S603
  • [22] Q-Rapids framework for advanced data analysis to improve rapid software development
    Rafał Kozik
    Michał Choraś
    Damian Puchalski
    Rafał Renk
    Journal of Ambient Intelligence and Humanized Computing, 2019, 10 : 1927 - 1936
  • [23] Q-Rapids framework for advanced data analysis to improve rapid software development
    Kozik, Rafal
    Choras, Michal
    Puchalski, Damian
    Renk, Rafal
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (05) : 1927 - 1936
  • [24] pyEIA: A Python']Python-based framework for data analysis of electrochemical methods for immunoassays
    Vishart, Jonas Lynge
    Castillo-Leon, Jaime
    Svendsen, Winnie E.
    SOFTWAREX, 2021, 15
  • [25] DataPrep.EDA: Task-Centric Exploratory Data Analysis for Statistical Modeling in Python']Python
    Peng, Jinglin
    Wu, Weiyuan
    Lockhart, Brandon
    Bian, Song
    Yan, Jing Nathan
    Xu, Linghao
    Chi, Zhixuan
    Rzeszotarski, Jeffrey M.
    Wang, Jiannan
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 2271 - 2280
  • [26] Sleep: An Open-Source Python']Python Software for Visualization, Analysis, and Staging of Sleep Data
    Combrisson, Etienne
    Vallat, Raphael
    Eichenlaub, Jean-Baptiste
    O'Reilly, Christian
    Lajnef, Tarek
    Guillot, Aymeric
    Ruby, Perrine M.
    Jerbi, Karim
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [27] PyWindAM: A Python']Python software for wind field analysis and cloud-based data management
    Chen, Nanxi
    Ma, Rujin
    Ge, Baixue
    Chang, Haocheng
    SOFTWAREX, 2024, 28
  • [28] Requirements for interactive graphics software for exploratory data analysis
    Antony Unwin
    Computational Statistics, 1999, 14 (1) : 7 - 22
  • [29] Requirements for interactive graphics software for exploratory data analysis
    Unwin, A
    COMPUTATIONAL STATISTICS, 1999, 14 (01) : 7 - 22