Energy-efficient collaborative task offloading in multi-access edge computing based on deep reinforcement learning

被引:0
|
作者
Wang, Shudong [1 ]
Zhao, Shengzhe [1 ]
Gui, Haiyuan [1 ]
He, Xiao [1 ]
Lu, Zhi [1 ]
Chen, Baoyun [1 ]
Fan, Zixuan [1 ]
Pang, Shanchen [1 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao 266580, Peoples R China
关键词
Multi-access edge computing; Collaborative task offloading; Graph neural network; Deep reinforcement learning; Device-to-Device; RESOURCE-ALLOCATION;
D O I
10.1016/j.adhoc.2024.103743
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the multi-access edge computing (MEC), task offloading through device-to-device (D2D) communication can improve the performance of edge computing by utilizing the computational resources of nearby mobile devices (MDs). However, adapting to the time-varying wireless environment and efficiently and quickly allocating tasks to MEC and other MDs to minimize the energy consumption of MDs is a challenge. First, we constructed a multi-device collaborative task offloading framework, modeling the collaborative task offloading decision problem as a graph state transition problem and utilizing a graph neural network (GNN) to fully explore the potential relationships between MDs and MEC. Then, we proposed a collaborative task offloading algorithm based on graph reinforcement learning and introduced a penalty mechanism that imposes penalties when the tasks of MDs exceed their deadlines. Simulation results show that, compared with other benchmark algorithms, this algorithm reduces energy consumption by approximately 20%, achieves higher task completion rates, and provides a more balanced load distribution.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Safety-Critical Offloading with Constrained Reinforcement Learning for Multi-access Edge Computing
    Huang, Hui
    Ye, Qiang
    Zhou, Yitong
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2025, 21 (02)
  • [32] Advanced Energy-Efficient Computation Offloading Using Deep Reinforcement Learning in MTC Edge Computing
    Khan, Israr
    Tao, Xiaofeng
    Rahman, G. M. Shafiqur
    Rehman, Waheed Ur
    Salam, Tabinda
    IEEE ACCESS, 2020, 8 (82867-82875) : 82867 - 82875
  • [33] Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩
    Liu, Xu
    Chai, Zheng-Yi
    Li, Ya-Lun
    Cheng, Yan-Yang
    Zeng, Yue
    INFORMATION SCIENCES, 2023, 642
  • [34] Reinforcement Learning Based Energy-Efficient Collaborative Inference for Mobile Edge Computing
    Xiao, Yilin
    Xiao, Liang
    Wan, Kunpeng
    Yang, Helin
    Zhang, Yi
    Wu, Yi
    Zhang, Yanyong
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (02) : 864 - 876
  • [35] Computation Offloading in Multi-Access Edge Computing Networks: A Multi-Task Learning Approach
    Yang, Bo
    Cao, Xuelin
    Bassey, Joshua
    Li, Xiangfang
    Kroecker, Timothy
    Qian, Lijun
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [36] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [37] Energy-Efficient Multi-Access Mobile Edge Computing With Secrecy Provisioning
    Qian, Li Ping
    Wu, Yuan
    Yu, Ningning
    Wang, Daohang
    Jiang, Fuli
    Jia, Weijia
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (01) : 237 - 252
  • [38] Graph convolutional network-based reinforcement learning for tasks offloading in multi-access edge computing
    Leng, Lixiong
    Li, Jingchen
    Shi, Haobin
    Zhu, Yi'an
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29163 - 29175
  • [39] Deep Learning-Assisted Energy-Efficient Task Offloading in Vehicular Edge Computing Systems
    Shang, Bodong
    Liu, Lingjia
    Tian, Zhi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (09) : 9619 - 9624
  • [40] Energy-Efficient Computation Offloading in Collaborative Edge Computing
    Lin, Rongping
    Xie, Tianze
    Luo, Shan
    Zhang, Xiaoning
    Xiao, Yong
    Moran, Bill
    Zukerman, Moshe
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21) : 21305 - 21322