Safety-Critical Offloading with Constrained Reinforcement Learning for Multi-access Edge Computing

被引:0
|
作者
Huang, Hui [1 ]
Ye, Qiang [1 ]
Zhou, Yitong [1 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
关键词
Constrained reinforcement learning; multi-access edge computing; real-time applications; task offloading; DELAY-AWARE;
D O I
10.1145/3715695
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The proliferation of computation-intensive applications, such as autonomous driving, has urged mobile devices to alleviate their local computation pressure using external computing resources. As a promising solution, Multi-access Edge Computing tackles this problem by offloading computational tasks from mobile devices to edge servers. However, existing offloading schemes suffer from two fundamental limitations. First, they lack built-in measures to prevent deadline misses. For safety-critical applications, including autonomous driving, a deadline miss could result in catastrophic consequences. Second, existing schemes typically update offloading policies periodically. Namely, a policy based on the current system state is generated for a time window consisting of multiple time slots. Since system states could change from one time slot to the next one, the generated policy might not work well during the entire window. In this article, we propose a novel offloading scheme for safety-critical applications, Constrained Reinforcement Learning-based Offloading (CRLO). With CRLO, a safety layer is added to the learning-based policy generator, which effectively eliminates deadline misses. Furthermore, a long-sequence forecasting model, Informer, is utilized to predict temporally dependent system states, which helps to generate appropriate offloading policies. Our experimental results indicate that CRLO outperforms existing schemes in terms of deadline satisfaction and task completion time.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Qc - DQN: A Novel Constrained Reinforcement Learning Method for Computation Offloading in Multi-access Edge Computing
    Zhuang, Shen
    Gao, Chengxi
    He, Ying
    Yu, F. Richard
    Wang, Yuhang
    Pan, Weike
    Ming, Zhong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [2] Decentralized Offloading Strategies Based on Reinforcement Learning for Multi-Access Edge Computing
    Hu, Chunyang
    Li, Jingchen
    Shi, Haobin
    Ning, Bin
    Gu, Qiong
    INFORMATION, 2021, 12 (09)
  • [3] Deep Reinforcement Learning for Dependent Task Offloading in Multi-Access Edge Computing
    Ye, Hengzhou
    Li, Jiaming
    Lu, Qiu
    IEEE ACCESS, 2024, 12 : 166281 - 166297
  • [4] Optimization for computational offloading in multi-access edge computing: A deep reinforcement learning scheme
    Wang, Jian
    Ke, Hongchang
    Liu, Xuejie
    Wang, Hui
    Computer Networks, 2022, 204
  • [5] Optimization for computational offloading in multi-access edge computing: A deep reinforcement learning scheme
    Wang, Jian
    Ke, Hongchang
    Liu, Xuejie
    Wang, Hui
    COMPUTER NETWORKS, 2022, 204
  • [6] Computation Offloading in Resource-Constrained Multi-Access Edge Computing
    Li, Kexin
    Wang, Xingwei
    He, Qiang
    Wang, Jielei
    Li, Jie
    Zhan, Siyu
    Lu, Guoming
    Dustdar, Schahram
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (11) : 10665 - 10677
  • [7] Offloading dependent tasks in multi-access edge computing: A multi-objective reinforcement learning approach
    Song, Fuhong
    Xing, Huanlai
    Wang, Xinhan
    Luo, Shouxi
    Dai, Penglin
    Li, Ke
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 128 : 333 - 348
  • [8] A Joint Caching and Offloading Strategy Using Reinforcement Learning for Multi-access Edge Computing Users
    Yuan, Yuan
    Su, Wei
    Hong, Gaofeng
    Li, Haoru
    Wang, Chang
    MOBILE NETWORKS & APPLICATIONS, 2024,
  • [9] Graph Attention Network Reinforcement Learning Based Computation Offloading in Multi-Access Edge Computing
    Liu, Yuxuan
    Xia, Geming
    Chen, Jian
    Zhang, Danlei
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 966 - 969
  • [10] A Joint Caching and Offloading Strategy Using Reinforcement Learning for Multi-access Edge Computing Users
    Yuan, Yuan
    Su, Wei
    Hong, Gaofeng
    Li, Haoru
    Wang, Chang
    MOBILE NETWORKS & APPLICATIONS, 2024,