Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩

被引:12
|
作者
Liu, Xu [1 ]
Chai, Zheng-Yi [2 ]
Li, Ya-Lun [3 ]
Cheng, Yan-Yang [2 ]
Zeng, Yue [4 ]
机构
[1] Tiangong Univ, Sch Software, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[3] Tiangong Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
[4] Jinling Inst Technol, Sch Software Engn, Nanjing 211199, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle; Multi-access edge computing; Computation offloading; Multi-objective; Reinforcement learning; ALGORITHM;
D O I
10.1016/j.ins.2023.119154
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle-assisted multi-access edge computing (UAV-MEC) plays an important role in some complex environments such as mountainous and disaster areas. Computation offloading problem (COP) is one of the key issues of UAV-MEC, which mainly aims to minimize the conflict goals between energy consumption and delay. Due to the time-varying and uncertain nature of the UAV-MEC system, deep reinforcement learning is an effective method for solving the COP. Different from the existing works, in this paper, the COP in UAV-MEC system is modeled as a multi-objective Markov decision process, and a multi-objective deep reinforcement learning method is proposed to solve it. In the proposed algorithm, the scalar reward of reinforcement learning is expanded into a vector reward, and the weights are dynamically adjusted to meet different user preferences. The most important preferences are selected by non-dominated sorting, which can better maintain the previously learned strategy. In addition, the Q network structure combines Double Deep Q Network (Double DQN) with Dueling Deep Q Network (Dueling DQN) to improve the optimization efficiency. Simulation results show that the algorithm achieves a good balance between energy consumption and delay, and can obtain a better computation offloading scheme.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] Learning-Based Collaborative Computation Offloading in UAV-Assisted Multi-Access Edge Computing
    Xu, Zikun
    Liu, Junhui
    Guo, Ying
    Dong, Yunyun
    He, Zhenli
    ELECTRONICS, 2023, 12 (20)
  • [2] Deep reinforcement learning based computation offloading for xURLLC services with UAV-assisted IoT-based multi-access edge computing system
    Fatima, Nida
    Saxena, Paresh
    Giambene, Giovanni
    WIRELESS NETWORKS, 2023, 30 (9) : 7275 - 7291
  • [3] Offloading dependent tasks in multi-access edge computing: A multi-objective reinforcement learning approach
    Song, Fuhong
    Xing, Huanlai
    Wang, Xinhan
    Luo, Shouxi
    Dai, Penglin
    Li, Ke
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 128 : 333 - 348
  • [4] Deep Reinforcement Learning for Multi-Hop Offloading in UAV-Assisted Edge Computing
    Nguyen Tien Hoa
    Do Van Dai
    Le Hoang Lan
    Nguyen Cong Luong
    Duc Van Le
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16917 - 16922
  • [5] Deep Reinforcement Learning Based Computation Offloading in UAV-Assisted Edge Computing
    Zhang, Peiying
    Su, Yu
    Li, Boxiao
    Liu, Lei
    Wang, Cong
    Zhang, Wei
    Tan, Lizhuang
    DRONES, 2023, 7 (03)
  • [6] Evolutionary Multi-Objective Reinforcement Learning Based Trajectory Control and Task Offloading in UAV-Assisted Mobile Edge Computing
    Song, Fuhong
    Xing, Huanlai
    Wang, Xinhan
    Luo, Shouxi
    Dai, Penglin
    Xiao, Zhiwen
    Zhao, Bowen
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (12) : 7387 - 7405
  • [7] UAV-Assisted Multi-Access Edge Computing: Technologies and Challenges
    Zhang P.
    Wang C.
    Jiang C.
    Benslimane A.
    IEEE Internet of Things Magazine, 2021, 4 (04): : 12 - 17
  • [8] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [9] Task Computation Offloading for Multi-Access Edge Computing via Attention Communication Deep Reinforcement Learning
    Li, Kexin
    Wang, Xingwei
    He, Qiang
    Yang, Mingzhou
    Huang, Min
    Dustdar, Schahram
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2985 - 2999
  • [10] Computation Offloading and Trajectory Control for UAV-Assisted Edge Computing Using Deep Reinforcement Learning
    Qi, Huamei
    Zhou, Zheng
    APPLIED SCIENCES-BASEL, 2022, 12 (24):