Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩

被引:12
|
作者
Liu, Xu [1 ]
Chai, Zheng-Yi [2 ]
Li, Ya-Lun [3 ]
Cheng, Yan-Yang [2 ]
Zeng, Yue [4 ]
机构
[1] Tiangong Univ, Sch Software, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Comp Sci & Technol, Tianjin 300387, Peoples R China
[3] Tiangong Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
[4] Jinling Inst Technol, Sch Software Engn, Nanjing 211199, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicle; Multi-access edge computing; Computation offloading; Multi-objective; Reinforcement learning; ALGORITHM;
D O I
10.1016/j.ins.2023.119154
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unmanned aerial vehicle-assisted multi-access edge computing (UAV-MEC) plays an important role in some complex environments such as mountainous and disaster areas. Computation offloading problem (COP) is one of the key issues of UAV-MEC, which mainly aims to minimize the conflict goals between energy consumption and delay. Due to the time-varying and uncertain nature of the UAV-MEC system, deep reinforcement learning is an effective method for solving the COP. Different from the existing works, in this paper, the COP in UAV-MEC system is modeled as a multi-objective Markov decision process, and a multi-objective deep reinforcement learning method is proposed to solve it. In the proposed algorithm, the scalar reward of reinforcement learning is expanded into a vector reward, and the weights are dynamically adjusted to meet different user preferences. The most important preferences are selected by non-dominated sorting, which can better maintain the previously learned strategy. In addition, the Q network structure combines Double Deep Q Network (Double DQN) with Dueling Deep Q Network (Dueling DQN) to improve the optimization efficiency. Simulation results show that the algorithm achieves a good balance between energy consumption and delay, and can obtain a better computation offloading scheme.
引用
收藏
页数:17
相关论文
共 50 条
  • [42] Dynamic Task Software Caching-Assisted Computation Offloading for Multi-Access Edge Computing
    Chen, Zhixiong
    Yi, Wenqiang
    Alam, Atm S.
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (10) : 6950 - 6965
  • [43] A DEEP REINFORCEMENT LEARNING APPROACH FOR DATA MIGRATION IN MULTI-ACCESS EDGE COMPUTING
    De Vita, Fabrizio
    Bruneo, Dario
    Puliafito, Antonio
    Nardini, Giovanni
    Virdis, Antonio
    Stea, Giovanni
    2018 ITU KALEIDOSCOPE: MACHINE LEARNING FOR A 5G FUTURE (ITU K), 2018,
  • [44] Task Offloading and Trajectory Control for UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning
    Zhang, Lu
    Zhang, Zi-Yan
    Min, Luo
    Tang, Chao
    Zhang, Hong-Ying
    Wang, Ya-Hong
    Cai, Peng
    IEEE ACCESS, 2021, 9 : 53708 - 53719
  • [45] Edge Computing Task Offloading Optimization for a UAV-Assisted Internet of Vehicles via Deep Reinforcement Learning
    Yan, Ming
    Xiong, Rui
    Wang, Yan
    Li, Chunguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5647 - 5658
  • [46] Using Deep Reinforcement Learning for Application Relocation in Multi-Access Edge Computing
    De Vita F.
    Nardini G.
    Virdis A.
    Bruneo D.
    Puliafito A.
    Stea G.
    IEEE Communications Standards Magazine, 2019, 3 (03): : 71 - 78
  • [47] Entropy-based Reinforcement Learning for computation offloading service in software-defined multi-access edge computing
    Li, Kexin
    Wang, Xingwei
    Ni, Qiang
    Huang, Min
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 136 : 241 - 251
  • [48] Deep Reinforcement Learning for Scheduling and Offloading in UAV-Assisted Mobile Edge Networks
    Tian X.
    Miao P.
    Zhang L.
    Wireless Communications and Mobile Computing, 2023, 2023
  • [49] A Joint Caching and Offloading Strategy Using Reinforcement Learning for Multi-access Edge Computing Users
    Yuan, Yuan
    Su, Wei
    Hong, Gaofeng
    Li, Haoru
    Wang, Chang
    MOBILE NETWORKS & APPLICATIONS, 2024,
  • [50] Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
    Ziying Wu
    Danfeng Yan
    China Communications, 2021, 18 (11) : 26 - 41