Dynamic weighted federated contrastive self-supervised learning for state-of-health estimation of Lithium-ion battery with insufficient labeled samples

被引:0
|
作者
Han, Tengfei [1 ]
Lu, Zhiqiang [1 ]
Yu, Jianbo [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; State-of-health (SOH); Federated learning; Contrastive learning; FRAMEWORK;
D O I
10.1016/j.apenergy.2025.125336
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Insufficient data and lack of labeled data are common issues in state-of-health (SOH) estimation of Lithium-Ion battery. Federated learning-based SOH estimation methods offer a promising solution by collaborating multiple battery users to train the SOH estimation model while protecting data privacy. However, existing federated learning-based methods assume that the data collected by local clients are labeled. In practical applications, the labeled data is often sparse due to the high cost of testing battery capacity. To address this problem, a dynamic weighted federated contrastive self-supervised learning method (DW-FCSSL) is proposed in this paper. This approach leverages distributed unlabeled datasets to jointly train a global feature extractor across multiple clients while protecting data privacy, and is subsequently applied to battery SOH estimation. In particular, a time-frequency mixing based data augmentation (TFM-Aug) method is firstly proposed to enhance the capability for feature self-extraction. Secondly, an additional time information reconstruction module is incorporated into intra-client and client-server contrastive learning to extract multi-level degradation information of batteries from scattered unlabeled data. Further, a process-aware dynamic weighted aggregation algorithm is proposed to mitigate the effect of low-quality data from local client on the global model. With the trained global feature extractor, only a small number of labeled samples are required for each client to train a personalized estimator. Finally, the SOH estimation performance of DW-FCSSL is validated on the self-collected battery dataset and NASA battery dataset. It achieves a statistic estimation error of 2.80 % on the self-collected battery dataset with only 20 % labeled samples.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] A neural-driven stochastic degradation model for state-of-health estimation of lithium-ion battery
    Long, Zhendong
    Yuan, Lian
    Yin, Aijun
    Zhou, Junlin
    Song, Lei
    JOURNAL OF ENERGY STORAGE, 2024, 79
  • [42] Lithium-ion battery degradation diagnosis and state-of-health estimation with half cell electrode potential
    Zhu, Chen
    Sun, Liqing
    Chen, Cheng
    Tian, Jinpeng
    Shen, Weixiang
    Xiong, Rui
    ELECTROCHIMICA ACTA, 2023, 459
  • [43] State-of-Health Estimation for Lithium-Ion Batteries Using Domain Adversarial Transfer Learning
    Ye, Zhuang
    Yu, Jianbo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (03) : 3528 - 3543
  • [44] State-of-health estimation and remaining useful life for lithium-ion battery based on deep learning with Bayesian hyperparameter optimization
    Kong, Depeng
    Wang, Shuhui
    Ping, Ping
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (05) : 6081 - 6098
  • [45] State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis
    Li, Yuanyuan
    Sheng, Hanmin
    Cheng, Yuhua
    Stroe, Daniel-Ioan
    Teodorescu, Remus
    APPLIED ENERGY, 2020, 277
  • [46] A comprehensive review of state-of-charge and state-of-health estimation for lithium-ion battery energy storage systems
    Tao, Junjie
    Wang, Shunli
    Cao, Wen
    Takyi-Aninakwa, Paul
    Fernandez, Carlos
    Guerrero, Josep M.
    IONICS, 2024, 30 (10) : 5903 - 5927
  • [47] State-of-health estimation of lithium-ion battery based on convolutional neural network considering health indicator extraction
    Mun T.-S.
    Han D.-H.
    Kwon S.-U.
    Baek J.-B.
    Kim J.-H.
    Transactions of the Korean Institute of Electrical Engineers, 2021, 70 (10): : 1467 - 1474
  • [48] State-of-charge and state-of-health estimation for lithium-ion batteries based on dynamic impedance technique
    Hung, Min-Hsuan
    Lin, Chang-Hua
    Lee, Liang-Cheng
    Wang, Chien-Ming
    JOURNAL OF POWER SOURCES, 2014, 268 : 861 - 873
  • [49] Online State-of-Health Estimation for the Lithium-Ion Battery Based on An LSTM Neural Network with Attention Mechanism
    Zhang, Jiachang
    Hou, Jie
    Zhang, Zijian
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1334 - 1339
  • [50] A Convolutional Neural Network for Estimation of Lithium-Ion Battery State-of-Health during Constant Current Operation
    Chen, Junran
    Manivanan, Manjula
    Duque, Josimar
    Kollmeyer, Phillip
    Panchal, Satyam
    Gross, Oliver
    Emadi, Ali
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,