Dynamic weighted federated contrastive self-supervised learning for state-of-health estimation of Lithium-ion battery with insufficient labeled samples

被引:0
|
作者
Han, Tengfei [1 ]
Lu, Zhiqiang [1 ]
Yu, Jianbo [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; State-of-health (SOH); Federated learning; Contrastive learning; FRAMEWORK;
D O I
10.1016/j.apenergy.2025.125336
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Insufficient data and lack of labeled data are common issues in state-of-health (SOH) estimation of Lithium-Ion battery. Federated learning-based SOH estimation methods offer a promising solution by collaborating multiple battery users to train the SOH estimation model while protecting data privacy. However, existing federated learning-based methods assume that the data collected by local clients are labeled. In practical applications, the labeled data is often sparse due to the high cost of testing battery capacity. To address this problem, a dynamic weighted federated contrastive self-supervised learning method (DW-FCSSL) is proposed in this paper. This approach leverages distributed unlabeled datasets to jointly train a global feature extractor across multiple clients while protecting data privacy, and is subsequently applied to battery SOH estimation. In particular, a time-frequency mixing based data augmentation (TFM-Aug) method is firstly proposed to enhance the capability for feature self-extraction. Secondly, an additional time information reconstruction module is incorporated into intra-client and client-server contrastive learning to extract multi-level degradation information of batteries from scattered unlabeled data. Further, a process-aware dynamic weighted aggregation algorithm is proposed to mitigate the effect of low-quality data from local client on the global model. With the trained global feature extractor, only a small number of labeled samples are required for each client to train a personalized estimator. Finally, the SOH estimation performance of DW-FCSSL is validated on the self-collected battery dataset and NASA battery dataset. It achieves a statistic estimation error of 2.80 % on the self-collected battery dataset with only 20 % labeled samples.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Critical summary and perspectives on state-of-health of lithium-ion battery
    Yang, Bo
    Qian, Yucun
    Li, Qiang
    Chen, Qian
    Wu, Jiyang
    Luo, Enbo
    Xie, Rui
    Zheng, Ruyi
    Yan, Yunfeng
    Su, Shi
    Wang, Jingbo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 190
  • [22] A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery
    Bao, Zhengyi
    Jiang, Jiahao
    Zhu, Chunxiang
    Gao, Mingyu
    ENERGIES, 2022, 15 (12)
  • [23] State-of-Health Estimation of Lithium-Ion Battery Based on Interval Capacity for Electric Buses
    Ye, Baolin
    Zhang, Zhaosheng
    Wang, Shuai
    Ma, Yucheng
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6096 - 6106
  • [24] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [25] Lithium-Ion Battery State-of-Health Estimation Using the Incremental Capacity Analysis Technique
    Stroe, Daniel-Ioan
    Schaltz, Erik
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (01) : 678 - 685
  • [26] State-of-Health Estimation of Lithium-Ion Battery Based on Constant Voltage Charging Duration
    Chen, Jinyu
    Chen, Dawei
    Han, Xiaolan
    Li, Zhicheng
    Zhang, Weijun
    Lai, Chun Sing
    BATTERIES-BASEL, 2023, 9 (12):
  • [27] Combined Meta-Learning With CNN-LSTM Algorithms for State-of-Health Estimation of Lithium-Ion Battery
    Ouyang, Tiancheng
    Su, Yingying
    Wang, Chengchao
    Jin, Song
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2024, 39 (08) : 10106 - 10117
  • [28] Lithium-ion Battery State-of-Health Estimation via Histogram Data, Principal Component Analysis, and Machine Learning
    Chen, Junran
    Kollmeyer, Phillip
    Chiang, Fei
    Emadi, Ali
    2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [29] Estimation of State-of-Charge and State-of-Health for Lithium-Ion Degraded Battery Considering Side Reactions
    Gao, Yizhao
    Zhang, Xi
    Yang, Jun
    Guo, Bangjun
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (16) : A4018 - A4026
  • [30] Hyperspectral Image Classification With Contrastive Self-Supervised Learning Under Limited Labeled Samples
    Zhao, Lin
    Luo, Wenqiang
    Liao, Qiming
    Chen, Siyuan
    Wu, Jianhui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19