Dynamic weighted federated contrastive self-supervised learning for state-of-health estimation of Lithium-ion battery with insufficient labeled samples

被引:0
|
作者
Han, Tengfei [1 ]
Lu, Zhiqiang [1 ]
Yu, Jianbo [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; State-of-health (SOH); Federated learning; Contrastive learning; FRAMEWORK;
D O I
10.1016/j.apenergy.2025.125336
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Insufficient data and lack of labeled data are common issues in state-of-health (SOH) estimation of Lithium-Ion battery. Federated learning-based SOH estimation methods offer a promising solution by collaborating multiple battery users to train the SOH estimation model while protecting data privacy. However, existing federated learning-based methods assume that the data collected by local clients are labeled. In practical applications, the labeled data is often sparse due to the high cost of testing battery capacity. To address this problem, a dynamic weighted federated contrastive self-supervised learning method (DW-FCSSL) is proposed in this paper. This approach leverages distributed unlabeled datasets to jointly train a global feature extractor across multiple clients while protecting data privacy, and is subsequently applied to battery SOH estimation. In particular, a time-frequency mixing based data augmentation (TFM-Aug) method is firstly proposed to enhance the capability for feature self-extraction. Secondly, an additional time information reconstruction module is incorporated into intra-client and client-server contrastive learning to extract multi-level degradation information of batteries from scattered unlabeled data. Further, a process-aware dynamic weighted aggregation algorithm is proposed to mitigate the effect of low-quality data from local client on the global model. With the trained global feature extractor, only a small number of labeled samples are required for each client to train a personalized estimator. Finally, the SOH estimation performance of DW-FCSSL is validated on the self-collected battery dataset and NASA battery dataset. It achieves a statistic estimation error of 2.80 % on the self-collected battery dataset with only 20 % labeled samples.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [32] Adaptive State-of-Health Estimation for Lithium-Ion Battery With Partially Unlabeled and Incomplete Charge Curves
    Liu, Xingchen
    Hu, Zhiyong
    Mao, Lei
    Xie, Min
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2025, 11 (02): : 6165 - 6176
  • [33] Data-driven state-of-health estimation for lithium-ion battery based on aging features
    Li, Xining
    Ju, Lingling
    Geng, Guangchao
    Jiang, Quanyuan
    ENERGY, 2023, 274
  • [34] Novel Lithium-Ion Battery State-of-Health Estimation Method Using a Genetic Programming Model
    Yao, Hang
    Jia, Xiang
    Zhao, Qian
    Cheng, Zhi-Jun
    Guo, Bo
    IEEE ACCESS, 2020, 8 : 95333 - 95344
  • [35] A Balancing Current Ratio Based State-of-Health Estimation Solution for Lithium-Ion Battery Pack
    Tang, Xiaopeng
    Gao, Furong
    Liu, Kailong
    Liu, Qi
    Foley, Aoife M.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (08) : 8055 - 8065
  • [36] On-line state-of-health estimation of Lithium-ion battery cells using frequency excitation
    Kim, Jonghyeon
    Krueger, Lars
    Kowal, Julia
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [37] Enhanced state-of-charge and state-of-health estimation of lithium-ion battery incorporating machine learning and swarm intelligence algorithm
    Wang, Chengchao
    Su, Yingying
    Ye, Jinlu
    Xu, Peihang
    Xu, Enyong
    Ouyang, Tiancheng
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [38] Quick Evaluation of the State-of-Health of Spent Lithium-Ion Battery Modules
    Sun, Huiqin
    Liu, Wei
    Du, Zhichao
    Li, Xinzhou
    Fu, Zaiguo
    Liao, Qiangqiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (03):
  • [39] State-of-health estimation of lithium-ion battery based on fractional impedance model and interval capacity
    Yang, Qingxia
    Xu, Jun
    Li, Xiuqing
    Xu, Dan
    Cao, Binggang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 119
  • [40] HFCM-LSTM: A novel hybrid framework for state-of-health estimation of lithium-ion battery
    Gao, Mingyu
    Bao, Zhengyi
    Zhu, Chunxiang
    Jiang, Jiahao
    He, Zhiwei
    Dong, Zhekang
    Song, Yining
    ENERGY REPORTS, 2023, 9 : 2577 - 2590