Deep reinforcement learning-based spatio-temporal graph neural network for solving job shop scheduling problem

被引:0
|
作者
Gebreyesus, Goytom [1 ]
Fellek, Getu [1 ]
Farid, Ahmed [1 ]
Hou, Sicheng [1 ]
Fujimura, Shigeru [1 ]
Yoshie, Osamu [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Fukuoka, Japan
关键词
Deep reinforcement learning; Spatio-temporal representation; Job shop scheduling; Graph neural network; MIGRATING BIRDS OPTIMIZATION; ALGORITHM; BENCHMARKS; TIME;
D O I
10.1007/s12065-024-00989-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The job shop scheduling problem (JSSP) is a well-known NP-hard combinatorial optimization problem that focuses on assigning tasks to limited resources while adhering to certain constraints. Currently, deep reinforcement learning (DRL)-based solutions are being widely used to solve the JSSP by defining the problem structure on disjunctive graphs. Some of the proposed approaches attempt to leverage the structural information of the JSSP to capture the dynamics of the environment without considering the time dependency within the JSSP. However, learning graph representations only from the structural relationship of nodes results in a weak and incomplete representation of these graphs which does not provide an expressive representation of the dynamics in the environment. In this study, unlike existing frameworks, we defined the JSSP as a dynamic graph to explicitly consider the time-varying aspect of the JSSP environment. To this end, we propose a novel DRL framework that captures both the spatial and temporal attributes of the JSSP to construct rich and complete graph representations. Our DRL framework introduces a novel attentive graph isomorphism network (Attentive-GIN)-based spatial block to learn the structural relationship and a temporal block to capture the time dependency. Additionally, we designed a gated fusion block that selectively combines the learned representations from the two blocks. We trained the model using the proximal policy optimization algorithm of reinforcement learning. Experimental results show that our trained model exhibits significant performance enhancement compared to heuristic dispatching rules and learning-based solutions for both randomly generated datasets and public benchmarks.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Dynamic flexible job shop scheduling based on deep reinforcement learning
    Yang, Dan
    Shu, Xiantao
    Yu, Zhen
    Lu, Guangtao
    Ji, Songlin
    Wang, Jiabing
    He, Kongde
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2024,
  • [42] Encoder-Decoder Neural Network Architecture for solving Job Shop Scheduling Problems using Reinforcement Learning
    Magalhaes, Ricardo
    Martins, Miguel
    Vieira, Susana
    Santos, Filipe
    Sousa, Joao
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [43] A new ensemble deep graph reinforcement learning network for spatio-temporal traffic volume forecasting in a freeway network
    Shang, Pan
    Liu, Xinwei
    Yu, Chengqing
    Yan, Guangxi
    Xiang, Qingqing
    Mi, Xiwei
    Digital Signal Processing: A Review Journal, 2022, 123
  • [44] A new ensemble deep graph reinforcement learning network for spatio-temporal traffic volume forecasting in a freeway network
    Shang, Pan
    Liu, Xinwei
    Yu, Chengqing
    Yan, Guangxi
    Xiang, Qingqing
    Mi, Xiwei
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [45] A deep reinforcement learning with dynamic spatio-temporal graph model for solving urban logistics delivery planning problems
    Li, Yuanyuan
    Guan, Qingfeng
    Gu, Junfeng
    Jiang, Xintong
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [46] Power allocation using spatio-temporal graph neural networks and reinforcement learning
    Jamshidiha, Saeed
    Pourahmadi, Vahid
    Mohammadi, Abbas
    Bennis, Mehdi
    WIRELESS NETWORKS, 2025, 31 (02) : 1163 - 1176
  • [47] Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling
    Jing, Xuan
    Yao, Xifan
    Liu, Min
    Zhou, Jiajun
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (01) : 75 - 93
  • [48] Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling
    Xuan Jing
    Xifan Yao
    Min Liu
    Jiajun Zhou
    Journal of Intelligent Manufacturing, 2024, 35 : 75 - 93
  • [49] Learning Decentralized Flocking Controllers with Spatio-Temporal Graph Neural Network
    Chen, Siji
    Su, Yanshen
    Li, Peihan
    Zhou, Lifeng
    Lu, Chang-Tien
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2024, 2024, : 2596 - 2602
  • [50] A novel method-based reinforcement learning with deep temporal difference network for flexible double shop scheduling problem
    Wang, Xiao
    Zhong, Peisi
    Liu, Mei
    Zhang, Chao
    Yang, Shihao
    SCIENTIFIC REPORTS, 2024, 14 (01)