Deep reinforcement learning-based spatio-temporal graph neural network for solving job shop scheduling problem

被引:0
|
作者
Gebreyesus, Goytom [1 ]
Fellek, Getu [1 ]
Farid, Ahmed [1 ]
Hou, Sicheng [1 ]
Fujimura, Shigeru [1 ]
Yoshie, Osamu [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Fukuoka, Japan
关键词
Deep reinforcement learning; Spatio-temporal representation; Job shop scheduling; Graph neural network; MIGRATING BIRDS OPTIMIZATION; ALGORITHM; BENCHMARKS; TIME;
D O I
10.1007/s12065-024-00989-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The job shop scheduling problem (JSSP) is a well-known NP-hard combinatorial optimization problem that focuses on assigning tasks to limited resources while adhering to certain constraints. Currently, deep reinforcement learning (DRL)-based solutions are being widely used to solve the JSSP by defining the problem structure on disjunctive graphs. Some of the proposed approaches attempt to leverage the structural information of the JSSP to capture the dynamics of the environment without considering the time dependency within the JSSP. However, learning graph representations only from the structural relationship of nodes results in a weak and incomplete representation of these graphs which does not provide an expressive representation of the dynamics in the environment. In this study, unlike existing frameworks, we defined the JSSP as a dynamic graph to explicitly consider the time-varying aspect of the JSSP environment. To this end, we propose a novel DRL framework that captures both the spatial and temporal attributes of the JSSP to construct rich and complete graph representations. Our DRL framework introduces a novel attentive graph isomorphism network (Attentive-GIN)-based spatial block to learn the structural relationship and a temporal block to capture the time dependency. Additionally, we designed a gated fusion block that selectively combines the learned representations from the two blocks. We trained the model using the proximal policy optimization algorithm of reinforcement learning. Experimental results show that our trained model exhibits significant performance enhancement compared to heuristic dispatching rules and learning-based solutions for both randomly generated datasets and public benchmarks.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Solving Flexible Job-Shop Scheduling Problem with Heterogeneous Graph Neural Network Based on Relation and Deep Reinforcement Learning
    Tang, Hengliang
    Dong, Jinda
    MACHINES, 2024, 12 (08)
  • [2] Deep Reinforcement Learning Based on Graph Neural Network for Flexible Job Shop Scheduling Problem with Lot Streaming
    He, Junchao
    Li, Junqing
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 85 - 95
  • [3] Multiobjective optimization deep reinforcement learning for dependent task scheduling based on spatio-temporal fusion graph neural network
    Wang, Zhi
    Zhan, Wenhan
    Duan, Hancong
    Huang, Hualong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 148
  • [4] A deep reinforcement learning method based on a multiexpert graph neural network for flexible job shop scheduling
    Huang, Dailin
    Zhao, Hong
    Tian, Weiquan
    Chen, Kangping
    COMPUTERS & INDUSTRIAL ENGINEERING, 2025, 200
  • [5] Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning
    Song, Wen
    Chen, Xinyang
    Li, Qiqiang
    Cao, Zhiguang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1600 - 1610
  • [6] Job Shop Scheduling Problem Based on Deep Reinforcement Learning
    Li, Baoshuai
    Ye, Chunming
    Computer Engineering and Applications, 2024, 57 (23) : 248 - 254
  • [7] A reinforcement learning-based approach for solving multi-agent job shop scheduling problem
    Dong, Zhuoran
    Ren, Tao
    Qi, Fang
    Weng, Jiacheng
    Bai, Danyu
    Yang, Jie
    Wu, Chin-Chia
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024,
  • [8] An end-to-end deep reinforcement learning method based on graph neural network for distributed job-shop scheduling problem
    Huang, Jiang-Ping
    Gao, Liang
    Li, Xin-Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [9] A neural network for solving job shop scheduling problem
    Abada, A
    Binder, Z
    Ladet, P
    MANAGEMENT AND CONTROL OF PRODUCTION AND LOGISTICS, VOL 1 AND 2, 1998, : 295 - 299
  • [10] Deep Reinforcement Learning-Based Job Shop Scheduling of Smart Manufacturing
    Elsayed, Eman K.
    Elsayed, Asmaa K.
    Eldahshan, Kamal A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 5103 - 5120