Deep reinforcement learning-based spatio-temporal graph neural network for solving job shop scheduling problem

被引:0
|
作者
Gebreyesus, Goytom [1 ]
Fellek, Getu [1 ]
Farid, Ahmed [1 ]
Hou, Sicheng [1 ]
Fujimura, Shigeru [1 ]
Yoshie, Osamu [1 ]
机构
[1] Waseda Univ, Grad Sch Informat Prod & Syst, Fukuoka, Japan
关键词
Deep reinforcement learning; Spatio-temporal representation; Job shop scheduling; Graph neural network; MIGRATING BIRDS OPTIMIZATION; ALGORITHM; BENCHMARKS; TIME;
D O I
10.1007/s12065-024-00989-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The job shop scheduling problem (JSSP) is a well-known NP-hard combinatorial optimization problem that focuses on assigning tasks to limited resources while adhering to certain constraints. Currently, deep reinforcement learning (DRL)-based solutions are being widely used to solve the JSSP by defining the problem structure on disjunctive graphs. Some of the proposed approaches attempt to leverage the structural information of the JSSP to capture the dynamics of the environment without considering the time dependency within the JSSP. However, learning graph representations only from the structural relationship of nodes results in a weak and incomplete representation of these graphs which does not provide an expressive representation of the dynamics in the environment. In this study, unlike existing frameworks, we defined the JSSP as a dynamic graph to explicitly consider the time-varying aspect of the JSSP environment. To this end, we propose a novel DRL framework that captures both the spatial and temporal attributes of the JSSP to construct rich and complete graph representations. Our DRL framework introduces a novel attentive graph isomorphism network (Attentive-GIN)-based spatial block to learn the structural relationship and a temporal block to capture the time dependency. Additionally, we designed a gated fusion block that selectively combines the learned representations from the two blocks. We trained the model using the proximal policy optimization algorithm of reinforcement learning. Experimental results show that our trained model exhibits significant performance enhancement compared to heuristic dispatching rules and learning-based solutions for both randomly generated datasets and public benchmarks.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A Graph Neural Network Based Deep Learning Predictor for Spatio-Temporal Group Solar Irradiance Forecasting
    Jiao, Xuan
    Li, Xingshuo
    Lin, Dingyi
    Xiao, Weidong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6142 - 6149
  • [32] Federated Digital Twins: A Scheduling Approach Based on Temporal Graph Neural Network and Deep Reinforcement Learning
    Kim, Young-Jin
    Kim, Hanjin
    Ha, Beomsu
    Kim, Won-Tae
    IEEE ACCESS, 2025, 13 : 20763 - 20777
  • [33] A Reinforcement Learning-based Approach to Dynamic Job-shop Scheduling
    WEI YingZi ZHAO MingYang Shenyang Institute of AutomationChinese Academy of SciencesShenyang Shenyang Ligong UniversityShenyang
    自动化学报, 2005, (05) : 113 - 119
  • [34] Deep reinforcement learning for dynamic distributed job shop scheduling problem with transfers
    Lei, Yong
    Deng, Qianwang
    Liao, Mengqi
    Gao, Shuocheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [35] A Deep Reinforcement Learning Method Based on a Transformer Model for the Flexible Job Shop Scheduling Problem
    Xu, Shuai
    Li, Yanwu
    Li, Qiuyang
    ELECTRONICS, 2024, 13 (18)
  • [36] Low-Carbon Flexible Job Shop Scheduling Problem Based on Deep Reinforcement Learning
    Tang, Yimin
    Shen, Lihong
    Han, Shuguang
    SUSTAINABILITY, 2024, 16 (11)
  • [37] An effective deep actor-critic reinforcement learning method for solving the flexible job shop scheduling problem
    Wan L.
    Cui X.
    Zhao H.
    Li C.
    Wang Z.
    Neural Computing and Applications, 2024, 36 (20) : 11877 - 11899
  • [38] Deep Reinforcement Learning for Solving Distributed Permutation Flow Shop Scheduling Problem
    Wang, Yijun
    Qian, Bin
    Hu, Rong
    Yang, Yuanyuan
    Chen, Wenbo
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 333 - 342
  • [39] Solving Open Shop Scheduling Problem via Graph Attention Neural Network
    Li, Jing
    Dong, Xingye
    Zhang, Kai
    Han, Sheng
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 277 - 284
  • [40] Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems
    Liu, Chien-Liang
    Chang, Chuan-Chin
    Tseng, Chun-Jan
    IEEE ACCESS, 2020, 8 : 71752 - 71762