Flexural Behavior of Innovative Glass Fiber-Reinforced Composite Beams Reinforced with Gypsum-Based Composites

被引:1
|
作者
Liu, Yiwen [1 ]
Su, Bo [1 ]
Zhang, Tianyu [1 ]
机构
[1] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
gypsum; polyvinyl acetate fibers; GFRP; composite beams; coagulation characteristics; COMPRESSIVE BEHAVIOR; CONCRETE STRENGTH; GFRP; TUBES; PERFORMANCE;
D O I
10.3390/polym16233327
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Glass Fiber-Reinforced Composite (GFRP) has found widespread use in engineering structures due to its lightweight construction, high strength, and design flexibility. However, pure GFRP beams exhibit weaknesses in terms of stiffness, stability, and local compressive strength, which compromise their bending properties. In addressing these limitations, this study introduces innovative square GFRP beams infused with gypsum-based composites (GBIGCs). Comprehensive experiments and theoretical analyses have been conducted to explore their manufacturing process and bending characteristics. Initially, four types of GBIGC-namely, hollow GFRP beams, pure gypsum, steel-reinforced gypsum, and fiber-mixed gypsum-infused beams-were designed and fabricated for comparative analysis. Material tests were conducted to assess the coagulation characteristics of gypsum and its mechanical performance influenced by polyvinyl acetate fibers (PVAs). Subsequently, eight GFRP square beams (length: 1.5 m, section size: 150 mm x 150 mm) infused with different gypsum-based composites underwent four-point bending tests to determine their ultimate bending capacity and deflection patterns. The findings revealed that a 0.12% dosage of protein retarder effectively extends the coagulation time of gypsum, making it suitable for specimen preparation, with initial and final setting times of 113 min and 135 min, respectively. The ultimate bending load of PVA-mixed gypsum-infused GFRP beams is 203.84% higher than that of hollow beams, followed by pure gypsum and steel-reinforced gypsum, with increased values of 136.97% and 186.91%, respectively. The ultimate load values from the theoretical and experimental results showed good agreement, with an error within 7.68%. These three types of GBIGCs with significantly enhanced flexural performance can be filled with different materials to meet specific load-bearing requirements for various scenarios. Their improved flexural strength and lightweight characteristics make GBIGCs well suited for applications such as repairing roof beams, light prefabricated frames, coastal and offshore buildings.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Prediction of shear behavior of steel fiber-reinforced rubberized concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars
    Hosseini, Seyyed-Asgar
    Nematzadeh, Mahdi
    Chastre, Carlos
    COMPOSITE STRUCTURES, 2021, 256
  • [42] Flexural behavior and durability of reinforced concrete beams with seawater, sulfate-resistant cement, and glass fiber-reinforced polymer reinforcement
    Abushanab, Abdelrahman
    Ebead, Usama
    Genedy, Magdy
    Ayash, Nehal M.
    Fawzy, Sami Akil
    ENGINEERING STRUCTURES, 2025, 333
  • [43] Shear Behavior of Geopolymer Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Maranan, G. B.
    Manalo, A. C.
    Benmokrane, B.
    Karunasena, W.
    Mendis, P.
    ACI STRUCTURAL JOURNAL, 2017, 114 (02) : 337 - 348
  • [44] Behavior of Glass Fiber-Reinforced Polymer Reinforced Concrete Continuous T-Beams
    Rahman, S. M. Hasanur
    Mahmoud, Karam
    El-Salakawy, Ehab
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2017, 21 (02)
  • [45] Physical and mechanical properties of gypsum-based composites reinforced with basalt, glass, and PVA fibers
    Li, Zhenxing
    Wang, Xin
    Yan, Wenlong
    Ding, Lining
    Liu, Jianxun
    Wu, Zhishen
    Huang, Huang
    JOURNAL OF BUILDING ENGINEERING, 2023, 64
  • [46] Flexural Behavior and Serviceability of Normal- and High-Strength Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    El-Nemr, Amr
    Ahmed, Ehab A.
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2013, 110 (06) : 1077 - 1087
  • [47] Torsion Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars and Stirrups
    Mohamed, Hamdy M.
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2015, 112 (05) : 543 - 552
  • [48] Glass fiber-reinforced composites in dentistry
    Engie M. Safwat
    Ahmad G. A. Khater
    Ahmed G. Abd-Elsatar
    Gamal A. Khater
    Bulletin of the National Research Centre, 45 (1)
  • [49] GLASS FIBER-REINFORCED EPOXY COMPOSITES
    PATEL, SR
    PATEL, RG
    ANGEWANDTE MAKROMOLEKULARE CHEMIE, 1992, 197 : 141 - 147
  • [50] Numerical Analysis on Flexural Shear Behavior of Reinforced Concrete Beams Strengthened with Fiber-Reinforced Polymer Grid and Engineered Cement Composites
    Guo, Xiaoyang
    Zhang, Zaiyu
    Sun, Qing
    Tian, Penggang
    BUILDINGS, 2024, 14 (08)