Flexural behavior and durability of reinforced concrete beams with seawater, sulfate-resistant cement, and glass fiber-reinforced polymer reinforcement

被引:0
|
作者
Abushanab, Abdelrahman [1 ]
Ebead, Usama [1 ]
Genedy, Magdy [2 ]
Ayash, Nehal M. [2 ]
Fawzy, Sami Akil [3 ]
机构
[1] Qatar Univ, Coll Engn, Dept Civil & Environm Engn, Doha, Qatar
[2] Helwan Univ, Fac Engn El Mataria, Helwan, Egypt
[3] Cairo Inst Engn Comp Sci & Management, Civil Engn Dept, Cairo, Egypt
关键词
Seawater; Sulfate-resistant cement; Glass fiber-reinforced polymer; Flexural behavior; Reinforced concrete beams; Durability; SEA-SAND; PERFORMANCE; BARS; DEGRADATION; MECHANISMS; HYDRATION; FUTURE;
D O I
10.1016/j.engstruct.2025.120204
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Seawater has recently been proposed for concrete manufacturing as a sustainable alternative to fresh water. However, seawater degrades the concrete properties at later ages. Accordingly, this study experimentally and analytically investigated the flexural behavior and durability of 9 concrete beams reinforced with glass fiber-reinforced polymer (GFRP) reinforcement and made with 3 seawater replacement ratios (0 %, 50 %, and 100 %), 2 types of cement (ordinary Portlandite and sulfate-resistant cement), and 2 types of curing water (fresh water and seawater). The beams were prepared with dimensions of 200 x 500 x 2200 mm and tested after exposure to seawater for 6 months. The results demonstrated that incorporating seawater and sulfate-resistant cement simultaneously improved the 28-day mechanical properties of concrete by about 16 % compared to those made entirely with fresh water. Likewise, beams made with 100 % seawater and sulfate-resistant cement recorded an improvement of 23 % in the load-carrying capacity and 80 % in the energy absorption compared to beams with fresh water. In addition, the beams made with seawater and sulfate-resistant cement showed no difference in the failure mode and flexural properties after conditioning in seawater for 180 days as compared to the reference beam. Analytically, ACI 440.11-22 achieved the best moment capacity prediction of the tested beams with an average, standard deviation, and coefficient of variance of experimental-to-predicted moment ratios of 1.26, 0.11, and 8.75 %, respectively.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars
    Toutanji, HA
    Saafi, M
    ACI STRUCTURAL JOURNAL, 2000, 97 (05) : 712 - 719
  • [2] Flexural Behavior of Steel Fiber-Reinforced Lightweight Aggregate Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Wu, Tao
    Sun, Yijia
    Liu, Xi
    Wei, Hui
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2019, 23 (02)
  • [3] Flexural behavior of concrete beams hybrid-reinforced with glass fiber-reinforced polymer, carbon fiber-reinforced polymer, and steel rebars
    Terzioglu, Hilal
    Yildirim, Meltem Eryilmaz
    Karagoz, Omer
    Unluoglu, Esref
    Dogan, Mizan
    ADVANCES IN STRUCTURAL ENGINEERING, 2024, 27 (05) : 775 - 795
  • [4] Flexural and Durability Performance of Seawater-Mixed Glass Fiber-Reinforced Polymer-Reinforced Concrete Slabs
    Morales, Carlos N.
    Claure, Guillermo
    Nanni, Antonio
    ACI STRUCTURAL JOURNAL, 2022, 119 (01) : 105 - 118
  • [5] Effectiveness of Hybrid Fibers on Flexural Behavior of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Patil, Ganapati M.
    Chellapandian, M.
    Prakash, S. Suriya
    ACI STRUCTURAL JOURNAL, 2020, 117 (05) : 269 - 282
  • [6] Flexural Behavior of Reinforced Concrete Beams Reinforced with Glass Fiber Reinforced Polymer Rectangular Tubes
    Yuan, Jian Song
    Gao, Danying
    Zhu, Haitang
    Chen, Gang
    Zhao, Liangping
    FRONTIERS IN MATERIALS, 2020, 7
  • [7] Flexural behavior of concrete beams reinforced with glass fiber reinforced polymer and steel bars
    Farias, Cristian Espindola
    Pessi, Sarah Lodeti
    Wanderlind, Augusto
    Piva, Jorge Henrique
    Antunes, Elaine Guglielmi Pavei
    REVISTA DE LA CONSTRUCCION, 2022, 21 (03): : 506 - 522
  • [8] Flexural behavior of steel fiber-reinforced high-strength lightweight aggregate concrete beams reinforced with glass fiber-reinforced polymer bars
    Wu T.
    Sun Y.
    Liu X.
    Wei H.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2020, 41 (04): : 129 - 139and159
  • [9] Effect of Compressive Glass Fiber-Reinforced Polymer Bars on Flexural Performance of Reinforced Concrete Beams
    Hassanpour, Sina
    Khaloo, Alireza
    Aliasghar-Mamaghani, Mojtaba
    Khaloo, Hooman
    ACI STRUCTURAL JOURNAL, 2022, 119 (06) : 5 - 18
  • [10] Design Equations for Flexural Capacity of Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Xue, Weichen
    Peng, Fei
    Zheng, Qiaowen
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2016, 20 (03)