Flexural Behavior of Innovative Glass Fiber-Reinforced Composite Beams Reinforced with Gypsum-Based Composites

被引:1
|
作者
Liu, Yiwen [1 ]
Su, Bo [1 ]
Zhang, Tianyu [1 ]
机构
[1] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212000, Peoples R China
基金
中国国家自然科学基金;
关键词
gypsum; polyvinyl acetate fibers; GFRP; composite beams; coagulation characteristics; COMPRESSIVE BEHAVIOR; CONCRETE STRENGTH; GFRP; TUBES; PERFORMANCE;
D O I
10.3390/polym16233327
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Glass Fiber-Reinforced Composite (GFRP) has found widespread use in engineering structures due to its lightweight construction, high strength, and design flexibility. However, pure GFRP beams exhibit weaknesses in terms of stiffness, stability, and local compressive strength, which compromise their bending properties. In addressing these limitations, this study introduces innovative square GFRP beams infused with gypsum-based composites (GBIGCs). Comprehensive experiments and theoretical analyses have been conducted to explore their manufacturing process and bending characteristics. Initially, four types of GBIGC-namely, hollow GFRP beams, pure gypsum, steel-reinforced gypsum, and fiber-mixed gypsum-infused beams-were designed and fabricated for comparative analysis. Material tests were conducted to assess the coagulation characteristics of gypsum and its mechanical performance influenced by polyvinyl acetate fibers (PVAs). Subsequently, eight GFRP square beams (length: 1.5 m, section size: 150 mm x 150 mm) infused with different gypsum-based composites underwent four-point bending tests to determine their ultimate bending capacity and deflection patterns. The findings revealed that a 0.12% dosage of protein retarder effectively extends the coagulation time of gypsum, making it suitable for specimen preparation, with initial and final setting times of 113 min and 135 min, respectively. The ultimate bending load of PVA-mixed gypsum-infused GFRP beams is 203.84% higher than that of hollow beams, followed by pure gypsum and steel-reinforced gypsum, with increased values of 136.97% and 186.91%, respectively. The ultimate load values from the theoretical and experimental results showed good agreement, with an error within 7.68%. These three types of GBIGCs with significantly enhanced flexural performance can be filled with different materials to meet specific load-bearing requirements for various scenarios. Their improved flexural strength and lightweight characteristics make GBIGCs well suited for applications such as repairing roof beams, light prefabricated frames, coastal and offshore buildings.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] FLEXURAL BEHAVIOR OF HIGH-STRENGTH FIBER-REINFORCED CONCRETE BEAMS
    ASHOUR, SA
    WAFA, FF
    ACI STRUCTURAL JOURNAL, 1993, 90 (03) : 279 - 287
  • [32] Tensile strength and flexural behavior of steel fiber-reinforced concrete beams
    Lolla, Srilakshmi
    Oinam, Romanbabu M.
    Furtado, A.
    Varum, H.
    STRUCTURAL CONCRETE, 2024,
  • [33] Numerical Analysis on Flexural Behavior of Steel Fiber-Reinforced LWAC Beams Reinforced with GFRP Bars
    Sun, Yijia
    Liu, Yang
    Wu, Tao
    Liu, Xi
    Lu, Haodan
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [34] Fatigue and Flexural Behavior of Reinforced-Concrete Beams Strengthened with Fiber-Reinforced Cementitious Matrix
    Aljazaeri, Zena R.
    Myers, John J.
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2017, 21 (01)
  • [35] Flexural behavior of steel fiber-reinforced lightweight aggregate concrete beams prestressed with carbon fiber-reinforced polymer bars
    Sun Y.-J.
    Wu T.
    Liu X.
    Gongcheng Lixue/Engineering Mechanics, 2022, 39 (03): : 64 - 74
  • [36] Flexural behavior of concrete beams reinforced with carbon fiber-reinforced polymer (CFRP) prestressed prisms
    Svecova, D
    Razaqpur, AG
    ACI STRUCTURAL JOURNAL, 2000, 97 (05) : 731 - 738
  • [37] Flexural cracking behavior and calculation approach of reinforced highly ductile fiber-reinforced concrete beams
    Zhang, Min
    Deng, Mingke
    Wu, Zhiyan
    Pan, Jiaojiao
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2021, 21 (04)
  • [38] Multi-objective optimization of properties on polymer fiber-reinforced desulfurization gypsum-based composite cementitious materials
    An, Hongfang
    Wang, Lingling
    Lv, Fangtao
    Fu, Rusong
    Lu, Yuexian
    Kong, Dewen
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 369
  • [39] Flexural design methodology for concrete beams reinforced with fiber-reinforced polymers
    Yost, JR
    Gross, SR
    ACI STRUCTURAL JOURNAL, 2002, 99 (03) : 308 - 316
  • [40] Study of the flexural behavior of basalt fiber-reinforced concrete beams with basalt fiber-reinforced polymer bars and steel bars
    Wei, Zhiwei
    Wang, Tongshuai
    Li, Hongjie
    Dong, Tangchun
    Li, Zhihua
    Guo, Xuan
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2025, 22