Well-Posedness and Convergence Results for History-Dependent Inclusions

被引:0
|
作者
Sofonea, Mircea [1 ]
Tarzia, Domingo A. [2 ,3 ]
机构
[1] Laboratoire de Mathématiques et Physique, University of Perpignan, Perpignan, France
[2] Departamento de Matemática, FCE Universidad Austral Paraguay, Rosario, Argentina
[3] Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario,S2000EZP, Argentina
基金
欧盟地平线“2020”;
关键词
Choquet integral - Constitutive models - Hilbert spaces - Mathematical operators;
D O I
10.1080/01630563.2024.2423246
中图分类号
学科分类号
摘要
We consider an inclusion in a real Hilbert space governed by a time-dependent set of constraints and a history-dependent operator. We introduce the concept of (Formula presented.) - well-posedness for this inclusion, associated to a given Tykhonov triple (Formula presented.). Next, we provide a (Formula presented.) -well-posedness result that we use in order to deduce the continuous dependence of the solution with respect to the data. Then, we state and prove a convergence criterion to the solution of the inclusion that we use to prove a convergence result for an associate penalty problem. Moreover, we show that this criterion allows us to construct a Tykhonov triple (Formula presented.) -which give rise to an optimal well-posedness concept for the corresponding inclusion. Finally, we use these abstract results in the study of a nonlinear viscoelastic constitutive law with long memory term and unilateral constraints. © 2024 Taylor & Francis Group, LLC.
引用
收藏
页码:45 / 67
相关论文
共 50 条