Global Well-Posedness and Convergence Results to a 3D Regularized Boussinesq System in Sobolev Spaces

被引:0
|
作者
Selmi, Ridha [1 ,2 ,3 ]
Almutairi, Shahah [1 ]
机构
[1] Northern Border Univ, Coll Sci, Dept Math, POB 1321, Ar Ar 73222, Saudi Arabia
[2] Univ Gabes, Fac Sci, Dept Math, Gabes 6072, Tunisia
[3] Univ Tunis El Manar, Fac Sci Tunis, Lab Partial Differential Equat & Applicat LR03ES04, Tunis 1068, Tunisia
关键词
EQUATION;
D O I
10.1155/2024/4495266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a regularized periodic three-dimensional Boussinesq system. For a mean free initial temperature, we use the coupling between the velocity and temperature to close the energy estimates independently of time. This allows proving the existence of a global in time unique weak solution. Also, we establish that this solution depends continuously on the initial data. Moreover, we prove that this solution converges to a Leray-Hopf weak solution of the three-dimensional Boussinesq system as the regularizing parameter vanishes.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Global Well-Posedness and Convergence Results for the 3D-Regularized Boussinesq System
    Selmi, Ridha
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (06): : 1415 - 1435
  • [2] Well-posedness and convergence results for the 3D-Lagrange Boussinesq-α system
    Sboui, Abir
    Selmi, Ridha
    ARCHIV DER MATHEMATIK, 2022, 119 (01) : 89 - 100
  • [3] GLOBAL WELL-POSEDNESS OF THE 3D GENERALIZED BOUSSINESQ EQUATIONS
    Xu, Bo
    Zhou, Jiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4821 - 4829
  • [4] Global well-posedness of mild solution to the 3D Boussinesq system with damping
    Yang, Jiaqi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (01)
  • [5] On the global well-posedness for Boussinesq system
    Abidi, H.
    Hmidi, T.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) : 199 - 220
  • [6] GLOBAL WELL-POSEDNESS FOR THE 3-D BOUSSINESQ SYSTEM WITH DAMPING
    Yue, Gaocheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (09): : 4826 - 4846
  • [7] Global well-posedness for the 3D Newton-Boussinesq equations
    Wu, Lili
    ARMENIAN JOURNAL OF MATHEMATICS, 2016, 8 (01): : 58 - 67
  • [8] Well-posedness to 3D Burgers’ equation in critical Gevrey Sobolev spaces
    Ridha Selmi
    Abdelkerim Châabani
    Archiv der Mathematik, 2019, 112 : 661 - 672
  • [9] Well-posedness to 3D Burgers' equation in critical Gevrey Sobolev spaces
    Selmi, Ridha
    Chaabani, Abdelkerim
    ARCHIV DER MATHEMATIK, 2019, 112 (06) : 661 - 672
  • [10] On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity
    Hammadi ABIDI
    Ping ZHANG
    ChineseAnnalsofMathematics,SeriesB, 2019, (05) : 643 - 688