Global Well-Posedness and Convergence Results to a 3D Regularized Boussinesq System in Sobolev Spaces

被引:0
|
作者
Selmi, Ridha [1 ,2 ,3 ]
Almutairi, Shahah [1 ]
机构
[1] Northern Border Univ, Coll Sci, Dept Math, POB 1321, Ar Ar 73222, Saudi Arabia
[2] Univ Gabes, Fac Sci, Dept Math, Gabes 6072, Tunisia
[3] Univ Tunis El Manar, Fac Sci Tunis, Lab Partial Differential Equat & Applicat LR03ES04, Tunis 1068, Tunisia
关键词
EQUATION;
D O I
10.1155/2024/4495266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a regularized periodic three-dimensional Boussinesq system. For a mean free initial temperature, we use the coupling between the velocity and temperature to close the energy estimates independently of time. This allows proving the existence of a global in time unique weak solution. Also, we establish that this solution depends continuously on the initial data. Moreover, we prove that this solution converges to a Leray-Hopf weak solution of the three-dimensional Boussinesq system as the regularizing parameter vanishes.
引用
收藏
页数:6
相关论文
共 50 条