Global well-posedness for gKdV-3 in Sobolev spaces of negative index

被引:1
|
作者
Zhang, Zhi Fei [1 ]
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
KdV equation; global well posedness; I-method; multilinear estimate;
D O I
10.1007/s10114-007-5597-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial value problem for the generalized Korteweg-deVries equation of order three on the line is shown to be globally well posed for rough data. Our proof is based on the multilinear estimate and the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao.
引用
收藏
页码:857 / 866
页数:10
相关论文
共 50 条
  • [1] Global Well-posedness for gKdV-3 in Sobolev Spaces of Negative Index
    Zhi Fei ZHANG School of Mathematical Science
    Acta Mathematica Sinica,English Series, 2008, 24 (05) : 857 - 866
  • [2] Global well-posedness for gKdV-3 in Sobolev spaces of negative index
    Zhi Fei Zhang
    Acta Mathematica Sinica, English Series, 2008, 24 : 857 - 866
  • [3] Global well-posedness for KdV in Sobolev spaces of negative index
    Colliander, J.
    Keel, M.
    Staffilani, G.
    Takaoka, H.
    Tao, T.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [4] A REMARK ON GLOBAL WELL-POSEDNESS BELOW L2 FOR THE GKDV-3 EQUATION
    Gruenrock, Axel
    Panthee, Mahendra
    Silva, Jorge Drumond
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (11) : 1229 - 1236
  • [5] GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES
    Oh, Tadahiro
    Wang, Yuzhao
    FORUM OF MATHEMATICS SIGMA, 2018, 6
  • [7] WELL-POSEDNESS OF THE PRANDTL EQUATION IN SOBOLEV SPACES
    Alexandre, R.
    Wang, Y. -G.
    Xu, C. -J.
    Yang, T.
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 28 (03) : 745 - 784
  • [8] WELL-POSEDNESS FOR THE SUPERCRITICAL GKDV EQUATION
    Strunk, Nils
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 527 - 542
  • [9] Analytic well-posedness of periodic gKdV
    Himonas, A. Alexandrou
    Petronilho, Gerson
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (11) : 3101 - 3112
  • [10] Well-posedness of the ADMB-KdV equation in Sobolev spaces of negative indices
    Esfahani A.
    Pourgholi R.
    Acta Mathematica Vietnamica, 2014, 39 (2) : 237 - 251