Well-Posedness and Convergence Results for History-Dependent Inclusions

被引:0
|
作者
Sofonea, Mircea [1 ]
Tarzia, Domingo A. [2 ,3 ]
机构
[1] Laboratoire de Mathématiques et Physique, University of Perpignan, Perpignan, France
[2] Departamento de Matemática, FCE Universidad Austral Paraguay, Rosario, Argentina
[3] Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario,S2000EZP, Argentina
基金
欧盟地平线“2020”;
关键词
Choquet integral - Constitutive models - Hilbert spaces - Mathematical operators;
D O I
10.1080/01630563.2024.2423246
中图分类号
学科分类号
摘要
We consider an inclusion in a real Hilbert space governed by a time-dependent set of constraints and a history-dependent operator. We introduce the concept of (Formula presented.) - well-posedness for this inclusion, associated to a given Tykhonov triple (Formula presented.). Next, we provide a (Formula presented.) -well-posedness result that we use in order to deduce the continuous dependence of the solution with respect to the data. Then, we state and prove a convergence criterion to the solution of the inclusion that we use to prove a convergence result for an associate penalty problem. Moreover, we show that this criterion allows us to construct a Tykhonov triple (Formula presented.) -which give rise to an optimal well-posedness concept for the corresponding inclusion. Finally, we use these abstract results in the study of a nonlinear viscoelastic constitutive law with long memory term and unilateral constraints. © 2024 Taylor & Francis Group, LLC.
引用
收藏
页码:45 / 67
相关论文
共 50 条
  • [21] Well-posedness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions
    Ba Khiet Le
    OPTIMIZATION, 2020, 69 (06) : 1187 - 1217
  • [22] Sharp well-posedness results for the BBM equation
    Bona, Jerry L.
    Tzvetkov, Nikolay
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (04) : 1241 - 1252
  • [23] Well-posedness and stability results for the Gardner equation
    Miguel A. Alejo
    Nonlinear Differential Equations and Applications NoDEA, 2012, 19 : 503 - 520
  • [24] Well-posedness results for the short pulse equation
    Giuseppe Maria Coclite
    Lorenzo di Ruvo
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1529 - 1557
  • [25] Well-posedness results for a class of toxicokinetic models
    Banks, HT
    Potter, LK
    DYNAMIC SYSTEMS AND APPLICATIONS, 2005, 14 (02): : 297 - 322
  • [26] Well-posedness and stability results for the Gardner equation
    Alejo, Miguel A.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (04): : 503 - 520
  • [27] Well-Posedness Results of Certain Variational Inequalities
    Treanta, Savin
    MATHEMATICS, 2022, 10 (20)
  • [28] Well-posedness results for the short pulse equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1529 - 1557
  • [29] A convergence result for history-dependent quasivariational inequalities
    Benraouda, Ahlem
    Sofonea, Mircea
    APPLICABLE ANALYSIS, 2017, 96 (15) : 2635 - 2651
  • [30] CONVERGENCE AND WELL-POSEDNESS PROPERTIES OF UNIFORMLY LOCALLY CONTRACTIVE MAPPINGS
    Reich, Simeon
    Zaslavski, Alexander J.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 761 - 773