Area-Efficient Barrett Modular Multiplication With Optimized Karatsuba Algorithm

被引:1
|
作者
Zhang, Bo [1 ]
Yan, Shoumeng [1 ]
机构
[1] Ant Grp Co Ltd, Comp Syst Lab, Ant Res, Hangzhou 310000, Peoples R China
关键词
Barrett modular multiplication (BMM); cryptosystem; Karatsuba algorithm; modular multiplication (MM);
D O I
10.1109/TCAD.2024.3415017
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents an area-efficient Barrett modular multiplication (BMM) algorithm, facilitating the development of cryptosystems like fully homomorphic encryption. Instead of implementing three normal multiplications required by classic BMM, our proposed BMM introduces optimizations for multiplication AB, truncated multiplication & LeftFloor;AB/2(f)& RightFloor; , and modular multiplication (MM) AB mod 2(f). Taking the 4-term Karatsuba algorithm as an example, an N-bit multiplication AB can be decomposed into 9 (N/4) -bit multiplications. Our optimized approaches for truncated multiplication and MM require an area equivalent to only 6.5 (N/4) -bit multiplications when f approximate to N . Furthermore, our optimized Karatsuba multiplications introduce efficient (E, I) matrix pairs, circumventing area overhead from complex I matrices and sign extension in multiplication. We also employ encode algorithm to eliminate many additions needed in BMM and inside multiplications, significantly shortening critical path. Experimental results demonstrate the advantages of our proposed BMM in terms of throughput and area efficiency.
引用
收藏
页码:4626 / 4639
页数:14
相关论文
共 50 条
  • [41] Area-Efficient Finite Field Multiplication Using Hybrid SET-MOS Technology
    Zhang, Chen
    Wu, Huapeng
    Chen, Chunhong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2022, 69 (11) : 4358 - 4366
  • [42] AREA-EFFICIENT ARCHITECTURES FOR THE VITERBI ALGORITHM .1. THEORY
    SHUNG, CB
    LIN, HD
    CYPHER, R
    SIEGEL, PH
    THAPAR, HK
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1993, 41 (04) : 636 - 644
  • [43] Power and area-efficient register designs involving EHO algorithm
    Sabu, Neethu Anna
    Batri, K.
    CIRCUIT WORLD, 2020, 46 (02) : 93 - 105
  • [44] Area-Efficient Design of Modular Exponentiation Using Montgomery Multiplier for RSA Cryptosystem
    Nti, Richard Boateng
    Ryoo, Kwangki
    ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING, MUE/FUTURETECH 2018, 2019, 518 : 431 - 437
  • [45] Performance Analysis of Karatsuba Multiplication Algorithm for Different Bit Lengths
    Eyupoglu, Can
    WORLD CONFERENCE ON TECHNOLOGY, INNOVATION AND ENTREPRENEURSHIP, 2015, : 1860 - 1864
  • [46] A Karatsuba-Based Algorithm for Polynomial Multiplication in Chebyshev Form
    Lima, Juliano B.
    Panario, Daniel
    Wang, Qiang
    IEEE TRANSACTIONS ON COMPUTERS, 2010, 59 (06) : 835 - 841
  • [47] Optimizing the Montgomery Modular Multiplier for a Power- and Area-Efficient Hardware Architecture
    Leme, Mateus Terribele
    Paim, Guilherme
    Rocha, Leandro M. G.
    Uckert, Patricia
    Lima, Vitor G.
    Soarest, Rafael
    da Costat, Eduardo A. C.
    Bampi, Sergio
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 1084 - 1087
  • [48] Efficient residue number system iterative modular multiplication algorithm for fast modular exponentiation
    Yang, J. -H.
    Chang, C. -C.
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2008, 2 (01): : 1 - 5
  • [49] Design optimization of a high-speed, area-efficient and low-power Montgomery modular multiplier for RSA algorithm
    Masui, S
    Mukaida, K
    Takenaka, M
    Torii, N
    IEICE TRANSACTIONS ON ELECTRONICS, 2005, E88C (04): : 576 - 581
  • [50] A FAST MODULAR MULTIPLICATION ALGORITHM
    CHIOU, CW
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 49 (1-2) : 11 - 17