Hamilton-Jacobi Reachability in Reinforcement Learning: A Survey

被引:0
|
作者
Ganai, Milan [1 ]
Gao, Sicun [1 ]
Herbert, Sylvia L. [2 ]
机构
[1] University of California San Diego, Department of Computer Science and Engineering, San Diego,CA,92093, United States
[2] University of California San Diego, Department of Mechanical and Aerospace Engineering, San Diego,CA,92093, United States
来源
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic programming
引用
下载
收藏
页码:310 / 324
相关论文
共 50 条
  • [31] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [32] On the vectorial Hamilton-Jacobi system
    Yan, BS
    PROCEEDINGS OF THE CONFERENCE ON NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, : 212 - 221
  • [33] HAMILTON-JACOBI THEORIES FOR STRINGS
    KASTRUP, HA
    RINKE, M
    PHYSICS LETTERS B, 1981, 105 (2-3) : 191 - 196
  • [34] ON THE QUANTUM HAMILTON-JACOBI FORMALISM
    DECASTRO, AS
    DUTRA, AD
    FOUNDATIONS OF PHYSICS, 1991, 21 (06) : 649 - 663
  • [35] HAMILTON-JACOBI FORMALISM FOR STRINGS
    NAMBU, Y
    PHYSICS LETTERS B, 1980, 92 (3-4) : 327 - 330
  • [36] On Jacobi's theorem in Hamilton-Jacobi theory
    Samelson, H
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (02) : 619 - 623
  • [37] Quantum Hamilton-Jacobi theory
    Roncadelli, Marco
    Schulman, L. S.
    PHYSICAL REVIEW LETTERS, 2007, 99 (17)
  • [38] Hamilton-Jacobi meet Mobius
    Faraggi, Alon E.
    Matone, Marco
    4TH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES (DISCRETE2014), 2015, 631
  • [39] HAMILTON-JACOBI PERTURBATION THEORY
    FERRELL, TL
    AMERICAN JOURNAL OF PHYSICS, 1971, 39 (06) : 622 - &
  • [40] The Hamilton-Jacobi approach to Teleparallelism
    Pimentel, BM
    Pompeia, PJ
    da Rocha-Neto, JF
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (09): : 981 - 992