Hamilton-Jacobi meet Mobius

被引:1
|
作者
Faraggi, Alon E. [1 ]
Matone, Marco [2 ]
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[2] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy
关键词
STANDARD-LIKE MODEL; EQUIVALENCE PRINCIPLE; QUANTUM-MECHANICS; POSTULATE; DUALITY; SPACE;
D O I
10.1088/1742-6596/631/1/012010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Adaptation of the Hamilton-Jacobi formalism to quantum mechanics leads to a cocycle condition, which is invariant under D-dimensional Mobius transformations with Euclidean or Minkowski metrics. In this paper we aim to provide a pedagogical presentation of the proof of the Mobius symmetry underlying the cocycle condition. The Mobius symmetry implies energy quantization and undefinability of quantum trajectories, without assigning any prior interpretation to the wave function. As such, the Hamilton Jacobi formalism, augmented with the global Mobius symmetry, provides an alternative starting point, to the axiomatic probability interpretation of the wave function, for the formulation of quantum mechanics and the quantum spacetime. The Mobius symmetry can only be implemented consistently if spatial space is compact, and correspondingly if there exist a finite ultraviolet length scale. Evidence for non trivial space topology may exist in the cosmic microwave background radiation.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Hamilton-Jacobi Skeletons
    Kaleem Siddiqi
    Sylvain Bouix
    Allen Tannenbaum
    Steven W. Zucker
    International Journal of Computer Vision, 2002, 48 : 215 - 231
  • [2] Hamilton-Jacobi diffieties
    Vitagliano, Luca
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) : 1932 - 1949
  • [3] Hamilton-Jacobi skeletons
    Siddiqi, K
    Bouix, S
    Tannenbaum, A
    Zucker, SW
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2002, 48 (03) : 215 - 231
  • [4] HAMILTON-JACOBI EQUATION
    ROSENBLO.PC
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 43 (04) : 245 - &
  • [5] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [6] DISCRETE HAMILTON-JACOBI THEORY
    Ohsawa, Tomoki
    Bloch, Anthony M.
    Leok, Melvin
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (04) : 1829 - 1856
  • [7] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [8] On the vectorial Hamilton-Jacobi system
    Yan, BS
    PROCEEDINGS OF THE CONFERENCE ON NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, : 212 - 221
  • [9] HAMILTON-JACOBI THEORIES FOR STRINGS
    KASTRUP, HA
    RINKE, M
    PHYSICS LETTERS B, 1981, 105 (2-3) : 191 - 196
  • [10] ON THE QUANTUM HAMILTON-JACOBI FORMALISM
    DECASTRO, AS
    DUTRA, AD
    FOUNDATIONS OF PHYSICS, 1991, 21 (06) : 649 - 663