Multi-type parameter prediction of traffic flow based on Time-space attention graph convolutional network

被引:0
|
作者
Zhang G. [1 ]
Wang H. [2 ]
Yin Y. [2 ]
机构
[1] Baidu Inc, Autonomous Driving Unit (ADU), Beijing
[2] Inner Mongolia Agricultural University, College of Energy and Transportation Engineering, Hohhot
关键词
Convolutional Neural Network; Prediction; Spatiotemporal attention graph; Traffic flow;
D O I
10.46300/9106.2021.15.97
中图分类号
学科分类号
摘要
Graph Convolutional Neural Networks are more and more widely used in traffic flow parameter prediction tasks by virtue of their excellent non-Euclidean spatial feature extraction capabilities. However, most graph convolutional neural networks are only used to predict one type of traffic flow parameter. This means that the proposed graph convolutional neural network may only be effective for specific parameters of specific travel modes. In order to improve the universality of graph convolutional neural networks. By embedding time feature and spatio-temporal attention layer, we propose a spatio-temporal attention graph convolutional neural network based on the attention mechanism of the neural network. Through experiments on passenger flow data and vehicle speed data of two different travel modes (Hangzhou Metro Data and California Highway Data), it is verified that the proposed spatio-temporal attention graph convolutional neural network can be used to predict passenger flow and vehicle speed simultaneously. Meanwhile, the error distribution range of the proposed model is minimum, and the overall level of prediction results is more accurate. © 2021, North Atlantic University Union NAUN. All rights reserved.
引用
收藏
页码:902 / 912
页数:10
相关论文
共 50 条
  • [31] A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Wu, Dan
    Cui, Jianqun
    Chang, Yanan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (08) : 1 - 14
  • [32] Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction
    Chen, Jian
    Zheng, Li
    Hu, Yuzhu
    Wang, Wei
    Zhang, Hongxing
    Hu, Xiping
    INFORMATION FUSION, 2024, 104
  • [33] Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction
    Jihua Ye
    Shengjun Xue
    Aiwen Jiang
    Digital Communications and Networks, 2022, 8 (03) : 343 - 350
  • [34] Road network dynamic splitting based on time-space characteristic of traffic flow
    Dong, Chun-Jiao
    Shao, Chun-Fu
    Chen, Xiao-Ming
    Li, Juan
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2010, 40 (06): : 1528 - 1532
  • [35] Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction
    Ye, Jihua
    Xue, Shengjun
    Jiang, Aiwen
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (03) : 343 - 350
  • [36] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Chen, Yuguang
    Huang, Jintao
    Xu, Hongbin
    Guo, Jincheng
    Su, Linyong
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] Road Network Traffic Flow Prediction Method Based on Graph Attention Networks
    Wang, Junqiang
    Yang, Shuqiang
    Gao, Ya
    Wang, Jun
    Alfarraj, Osama
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024,
  • [38] Attention based convolutional networks for traffic flow prediction
    Juncong Lin
    Chengqiao Lin
    Qi Ye
    Multimedia Tools and Applications, 2024, 83 : 7379 - 7394
  • [39] Attention based convolutional networks for traffic flow prediction
    Lin, Juncong
    Lin, Chengqiao
    Ye, Qi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7379 - 7394
  • [40] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Yuguang Chen
    Jintao Huang
    Hongbin Xu
    Jincheng Guo
    Linyong Su
    Scientific Reports, 13