Multi-type parameter prediction of traffic flow based on Time-space attention graph convolutional network

被引:0
|
作者
Zhang G. [1 ]
Wang H. [2 ]
Yin Y. [2 ]
机构
[1] Baidu Inc, Autonomous Driving Unit (ADU), Beijing
[2] Inner Mongolia Agricultural University, College of Energy and Transportation Engineering, Hohhot
关键词
Convolutional Neural Network; Prediction; Spatiotemporal attention graph; Traffic flow;
D O I
10.46300/9106.2021.15.97
中图分类号
学科分类号
摘要
Graph Convolutional Neural Networks are more and more widely used in traffic flow parameter prediction tasks by virtue of their excellent non-Euclidean spatial feature extraction capabilities. However, most graph convolutional neural networks are only used to predict one type of traffic flow parameter. This means that the proposed graph convolutional neural network may only be effective for specific parameters of specific travel modes. In order to improve the universality of graph convolutional neural networks. By embedding time feature and spatio-temporal attention layer, we propose a spatio-temporal attention graph convolutional neural network based on the attention mechanism of the neural network. Through experiments on passenger flow data and vehicle speed data of two different travel modes (Hangzhou Metro Data and California Highway Data), it is verified that the proposed spatio-temporal attention graph convolutional neural network can be used to predict passenger flow and vehicle speed simultaneously. Meanwhile, the error distribution range of the proposed model is minimum, and the overall level of prediction results is more accurate. © 2021, North Atlantic University Union NAUN. All rights reserved.
引用
收藏
页码:902 / 912
页数:10
相关论文
共 50 条
  • [21] STGMN: A gated multi-graph convolutional network framework for traffic flow prediction
    Ni, Qingjian
    Zhang, Meng
    APPLIED INTELLIGENCE, 2022, 52 (13) : 15026 - 15039
  • [22] STGMN: A gated multi-graph convolutional network framework for traffic flow prediction
    Qingjian Ni
    Meng Zhang
    Applied Intelligence, 2022, 52 : 15026 - 15039
  • [23] Traffic Demand Prediction Based on Multi-dimensional Graph Convolutional Network
    Zeng, Peiying
    Jiang, Liying
    Lai, Yongxuan
    Yang, Fan
    Proceedings - 2023 IEEE International Conference on Big Data, BigData 2023, 2023, : 996 - 1004
  • [24] Short-term Traffic Flow Prediction Based on Time-space Characteristics
    Gao, Jinxiong
    Gao, Xiumei
    Yang, Hongye
    2020 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (IEEE ICITE 2020), 2020, : 128 - 132
  • [25] Graph Attention Convolutional Network: Spatiotemporal Modeling for Urban Traffic Prediction
    Song, Qingyu
    Ming, RuiBo
    Hu, Jianming
    Niu, Haoyi
    Gao, Mingyang
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [26] Network Traffic Overload Prediction with Temporal Graph Attention Convolutional Networks
    Yu, Qiaohong
    Wang, Huandong
    Li, Tong
    Jin, Depeng
    Wang, Xing
    Zhu, Lin
    Feng, Junlan
    Deng, Chao
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 885 - 890
  • [27] Dual flow fusion graph convolutional network for traffic flow prediction
    Zhao, Yuan
    Li, Mingxin
    Wen, Haoyang
    Zhao, Hui
    Wang, Yongjian
    Wen, Shixi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3425 - 3437
  • [28] Dynamic Spatio-temporal traffic flow prediction based on multi fusion graph attention network
    Cheng, Manru
    Jiang, Guo-Ping
    Song, Yurong
    Yang, Chen
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7285 - 7291
  • [29] A combined traffic flow forecasting model based on graph convolutional network and attention mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (12):
  • [30] A Graph Convolutional Method for Traffic Flow Prediction in Highway Network
    Zhang, Tianpu
    Ding, Weilong
    Chen, Tao
    Wang, Zhe
    Chen, Jun
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021