A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction

被引:0
|
作者
Cao, Shuqin [1 ]
Wu, Libing [1 ,2 ,3 ]
Zhang, Rui [4 ]
Wu, Dan [5 ]
Cui, Jianqun [6 ]
Chang, Yanan [6 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
[3] Guangdong Lab Artificial Intelligence & Digital Ec, Guangzhou 510335, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Cyber Sci & Engn, Nanjing 210094, Peoples R China
[5] Univ Windsor, Sch Comp Sci, Windsor, ON N9B 3P4, Canada
[6] Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
关键词
Traffic prediction; spatiotemporal correlations; multiscale graph; graph convolutional networks; cross-scale fusion;
D O I
10.1109/TITS.2024.3354802
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic prediction is vital to traffic planning, control, and optimization, which is necessary for intelligent traffic management. Existing methods mostly capture spatiotemporal correlations on a fine-grained traffic graph, which cannot make full use of cluster information in coarse-grained traffic graph. However, the flow variation of clusters in the coarse-grained traffic graph is more stable compared with nodes in the fine-grained traffic graph. And the flow variation of a fine-grained node is generally consistent with the trend of the cluster to which the node belongs. Thus information in the coarse-grained traffic graph can guide feature learning in the fine-grained traffic graph. To this end, we propose a Spatiotemporal Multiscale Graph Convolutional Network (SMGCN) that explores spatiotemporal correlations on a multiscale graph. Specifically, given a fine-grained traffic graph, we first generate a coarse-grained traffic graph by graph clustering, and extract spatiotemporal correlations on both fine-grained and coarse-grained traffic graphs. Then we propose a cross-scale fusion (CF) to implement information diffusion between the fine-grained and coarse-grained traffic graphs. Moreover, we employ an adaptive dynamic graph convolution network to mine both static and dynamic spatial features. We evaluate SMGCN on real-world datasets and obtain a 1.18% -3.32% improvement over state-of-the-arts.
引用
下载
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Traffic Flow Prediction Model Based on Attention Spatiotemporal Graph Convolutional Network
    Sun, HongXian
    2023 3rd International Symposium on Computer Technology and Information Science, ISCTIS 2023, 2023, : 148 - 153
  • [2] BLRGCN: A dynamic traffic flow prediction model based on spatiotemporal graph convolutional network
    Shi, Qiuhao
    Xu, Xiaolong
    Liu, Xuanyan
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 844 - 851
  • [3] Dynamic Graph Convolutional Recurrent Network With Spatiotemporal Category Information Embedding for Traffic Flow Prediction
    Zhu, Guodong
    Niu, Yunyun
    Du, Songzhi
    Wang, Pengcheng
    IEEE Internet of Things Journal, 2024, 11 (24) : 39473 - 39486
  • [4] Graph Attention Convolutional Network: Spatiotemporal Modeling for Urban Traffic Prediction
    Song, Qingyu
    Ming, RuiBo
    Hu, Jianming
    Niu, Haoyi
    Gao, Mingyang
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [5] Dynamic Spatiotemporal Correlation Graph Convolutional Network for Traffic Speed Prediction
    Cao, Chenyang
    Bao, Yinxin
    Shi, Quan
    Shen, Qinqin
    SYMMETRY-BASEL, 2024, 16 (03):
  • [6] Dynamic Spatiotemporal Graph Wavelet Network for Traffic Flow Prediction
    Xu, Weijian
    Liu, Jingjin
    Yan, Jingwen
    Yang, Juan
    Liu, Huifen
    Zhou, Teng
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 8019 - 8029
  • [7] Dual flow fusion graph convolutional network for traffic flow prediction
    Zhao, Yuan
    Li, Mingxin
    Wen, Haoyang
    Zhao, Hui
    Wang, Yongjian
    Wen, Shixi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3425 - 3437
  • [8] A Graph Convolutional Method for Traffic Flow Prediction in Highway Network
    Zhang, Tianpu
    Ding, Weilong
    Chen, Tao
    Wang, Zhe
    Chen, Jun
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [9] Multi-Head Spatiotemporal Attention Graph Convolutional Network for Traffic Prediction
    Oluwasanmi, Ariyo
    Aftab, Muhammad Umar
    Qin, Zhiguang
    Sarfraz, Muhammad Shahzad
    Yu, Yang
    Rauf, Hafiz Tayyab
    SENSORS, 2023, 23 (08)
  • [10] Graph Convolutional Network: Traffic Speed Prediction Fused with Traffic Flow Data
    Liu, Duanyang
    Xu, Xinbo
    Xu, Wei
    Zhu, Bingqian
    SENSORS, 2021, 21 (19)