PARAMETERIZED DOUGLAS-RACHFORD DYNAMICAL SYSTEM FOR MONOTONE INCLUSION PROBLEMS

被引:0
|
作者
Gautam P. [1 ]
Som K. [2 ]
Vetrivel V. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Madras, Chennai
[2] Computational Mathematics and Data Science Lab, Indian Institute of Technology Madras, Chennai
来源
关键词
Douglas-Rachford; Monotone inclusion; Preconditioning; Tikhonov regularization;
D O I
10.23952/asvao.5.2023.1.02
中图分类号
学科分类号
摘要
Douglas-Rachford splitting method with resolvent operator is a renowned algorithm to solve monotone inclusion problem involving sum of two monotone operators. In this paper, we investigate a Douglas-Rachford-based dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our main aim is to use parametrized resolvent instead of classical resolvent as the Douglas-Rachford operator in the framework of preconditioning. The convergence of the orbit is demonstrated. We also add a Tikhonov regularized term (both inner and outer regularization) to obtain strong convergence of the induced orbit. ©2023 Applied Set-Valued Analysis and Optimization.
引用
收藏
页码:19 / 29
页数:10
相关论文
共 50 条
  • [31] ANDERSON ACCELERATED DOUGLAS-RACHFORD SPLITTING
    Fu, Anqi
    Zhang, Junzi
    Boyd, Stephen
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (06): : A3560 - A3583
  • [32] A parameterized Douglas–Rachford algorithm
    Dongying Wang
    Xianfu Wang
    Computational Optimization and Applications, 2019, 73 : 839 - 869
  • [33] The cyclic Douglas-Rachford algorithm with r-sets-Douglas-Rachford operators
    Aragon Artacho, Francisco J.
    Censor, Yair
    Gibali, Aviv
    OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (04): : 875 - 889
  • [34] The Douglas-Rachford algorithm for a hyperplane and a doubleton
    Bauschke, Heinz H.
    Dao, Minh N.
    Lindstrom, Scott B.
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (01) : 79 - 93
  • [35] A second-order adaptive Douglas-Rachford dynamic method for maximal α-monotone operators
    Zhu, Ming
    Hu, Rong
    Fang, Ya-Ping
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2021, 23 (02)
  • [36] A Cyclic Douglas-Rachford Iteration Scheme
    Borwein, Jonathan M.
    Tam, Matthew K.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 1 - 29
  • [37] SURVEY: SIXTY YEARS OF DOUGLAS-RACHFORD
    LINDSTROM, S. C. O. T. T. B.
    SIMS, B. R. A. I. L. E. Y.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 110 (03) : 333 - 370
  • [38] On the order of the operators in the Douglas-Rachford algorithm
    Bauschke, Heinz H.
    Moursi, Walaa M.
    OPTIMIZATION LETTERS, 2016, 10 (03) : 447 - 455
  • [39] ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS
    ECKSTEIN, J
    BERTSEKAS, DP
    MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 293 - 318
  • [40] Douglas-Rachford splitting algorithm for solving state-dependent maximal monotone inclusions
    Adly, S.
    Le, B. K.
    OPTIMIZATION LETTERS, 2021, 15 (08) : 2861 - 2878