PARAMETERIZED DOUGLAS-RACHFORD DYNAMICAL SYSTEM FOR MONOTONE INCLUSION PROBLEMS

被引:0
|
作者
Gautam P. [1 ]
Som K. [2 ]
Vetrivel V. [1 ]
机构
[1] Department of Mathematics, Indian Institute of Technology Madras, Chennai
[2] Computational Mathematics and Data Science Lab, Indian Institute of Technology Madras, Chennai
来源
关键词
Douglas-Rachford; Monotone inclusion; Preconditioning; Tikhonov regularization;
D O I
10.23952/asvao.5.2023.1.02
中图分类号
学科分类号
摘要
Douglas-Rachford splitting method with resolvent operator is a renowned algorithm to solve monotone inclusion problem involving sum of two monotone operators. In this paper, we investigate a Douglas-Rachford-based dynamical systems designed to approach the solution sets of inclusion problems involving the sum of two maximally monotone operators. Our main aim is to use parametrized resolvent instead of classical resolvent as the Douglas-Rachford operator in the framework of preconditioning. The convergence of the orbit is demonstrated. We also add a Tikhonov regularized term (both inner and outer regularization) to obtain strong convergence of the induced orbit. ©2023 Applied Set-Valued Analysis and Optimization.
引用
收藏
页码:19 / 29
页数:10
相关论文
共 50 条
  • [21] On the Range of the Douglas-Rachford Operator
    Bauschke, Heinz H.
    Hare, Warren L.
    Moursi, Walaa M.
    MATHEMATICS OF OPERATIONS RESEARCH, 2016, 41 (03) : 884 - 897
  • [22] CONVERAGENCE OF RANDOMIZED DOUGLAS-RACHFORD METHOD FOR LINEAR SYSTEM
    Hu, Leyu
    Cai, Xingju
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 463 - 474
  • [23] An Inertial Parametric Douglas-Rachford Splitting Method for Nonconvex Problems
    Lu, Tianle
    Zhang, Xue
    MATHEMATICS, 2024, 12 (05)
  • [24] Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems
    Dao, Minh N.
    Phan, Hung M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 443 - 474
  • [25] Recent Results on Douglas-Rachford Methods for Combinatorial Optimization Problems
    Artacho, Francisco J. Aragon
    Borwein, Jonathan M.
    Tam, Matthew K.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 163 (01) : 1 - 30
  • [26] ON WEAK CONVERGENCE OF THE DOUGLAS-RACHFORD METHOD
    Svaiter, B. F.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (01) : 280 - 287
  • [27] An inertial Douglas-Rachford splitting algorithm for nonconvex and nonsmooth problems
    Feng, Junkai
    Zhang, Haibin
    Zhang, Kaili
    Zhao, Pengfei
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023, 35 (17):
  • [28] The ADMM algorithm for audio signal recovery and performance modification with the dual Douglas-Rachford dynamical system
    Calcan, Andrew
    Lindstrom, Scott B.
    AIMS MATHEMATICS, 2024, 9 (06): : 14640 - 14657
  • [29] 广义循环Douglas-Rachford算法
    郭科
    张有才
    西华师范大学学报(自然科学版), 2018, 39 (04) : 404 - 409
  • [30] On the local convergence of the Douglas-Rachford algorithm
    Bauschke, H. H.
    Noll, D.
    ARCHIV DER MATHEMATIK, 2014, 102 (06) : 589 - 600