Defect identification method for steel surfaces based on improved YOLOv5

被引:0
|
作者
Wang S. [1 ]
Zhang L. [2 ]
Yin G. [3 ]
机构
[1] College of Civil and Transportation Engineering, Hohai University, Nanjing
[2] College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing
[3] Safety Testing Center of Hydraulic Metal Structure, The Ministry of Water Resources, Hohai University, Nanjing
关键词
convolutional neural network; defect detection; steel; You Only Look Once YOLO;
D O I
10.3969/j.issn.1003-7985.2024.01.006
中图分类号
学科分类号
摘要
Traditional machine vision detection methods suffer from low accuracy in identifying small-scale defects. To address this a nondestructive identification method for steel surface defects is proposed based on an enhanced version of the fifth version of the You Only Look Once YOLOv5 algorithm. In this improved approach the Res2Block module is incorporated into the backbone of the YOLOv5 algorithm to expand the receptive field and improve computational efficiency. Additionally the recursive gated convolution structure is fused into the neck of the YOLOv5 algorithm to further enhance the computational performance of the surface defect identification method. To validate the effectiveness of the proposed method a series of ablation experiments were conducted using different module combinations. These results were then compared with those obtained through other object detection methods. This comparison reveals that the proposed method achieves a mean average precision of 67. 8% and an F1 -score of 86.0% in steel surface defect identification. When compared with the original YOLOv5 algorithm the proposed method exhibits superior performance particularly in the identification of small-scale steel surface defects. Furthermore it also surpasses other object detection methods such as SSD YOLOv3 YOLOv5-Lite and YOLOv8 demonstrating significant improvements in computational accuracy. © 2024 Southeast University. All rights reserved.
引用
收藏
页码:49 / 57
页数:8
相关论文
共 50 条
  • [11] Defect Detection Method for Vehicle Weld Porosity Based on Improved YOLOv5
    Zhou, Xiaolong
    Liu, Changjie
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (04)
  • [12] A bolt defect detection method for transmission lines based on improved YOLOv5
    Zou, Hongbo
    Sun, Jialun
    Ye, Ziyong
    Yang, Jinlong
    Yang, Changhua
    Li, Fengyang
    Xiong, Li
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [13] Defect detection method of lithium battery electrode based on improved YOLOv5
    Ran, Qingdong
    Zheng, Lixin
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (09): : 1811 - 1821
  • [14] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [15] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [16] Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm
    Yang, Xinan
    Gao, Sen
    Xia, Chen
    Zhang, Bo
    Chen, Rui
    Gao, Jie
    Zhu, Wenkui
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 99 - 106
  • [17] Automatic Fabric Defect Detection Based on an Improved YOLOv5
    Jin, Rui
    Niu, Qiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [18] Surface Defect Detection of Preform Based on Improved YOLOv5
    Hou, Jiatong
    You, Bo
    Xu, Jiazhong
    Wang, Tao
    Cao, Moran
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [19] Insulator Defect Detection Based on Improved YOLOv5 Model
    Chen, Yongxin
    Du, Zhenan
    Li, Hengxuan
    Zhang, Kanjun
    Wen, Pei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 123 - 127
  • [20] Metal surface defect detection based on improved YOLOv5
    Chuande Zhou
    Zhenyu Lu
    Zhongliang Lv
    Minghui Meng
    Yonghu Tan
    Kewen Xia
    Kang Liu
    Hailun Zuo
    Scientific Reports, 13