Defect identification method for steel surfaces based on improved YOLOv5

被引:0
|
作者
Wang S. [1 ]
Zhang L. [2 ]
Yin G. [3 ]
机构
[1] College of Civil and Transportation Engineering, Hohai University, Nanjing
[2] College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing
[3] Safety Testing Center of Hydraulic Metal Structure, The Ministry of Water Resources, Hohai University, Nanjing
关键词
convolutional neural network; defect detection; steel; You Only Look Once YOLO;
D O I
10.3969/j.issn.1003-7985.2024.01.006
中图分类号
学科分类号
摘要
Traditional machine vision detection methods suffer from low accuracy in identifying small-scale defects. To address this a nondestructive identification method for steel surface defects is proposed based on an enhanced version of the fifth version of the You Only Look Once YOLOv5 algorithm. In this improved approach the Res2Block module is incorporated into the backbone of the YOLOv5 algorithm to expand the receptive field and improve computational efficiency. Additionally the recursive gated convolution structure is fused into the neck of the YOLOv5 algorithm to further enhance the computational performance of the surface defect identification method. To validate the effectiveness of the proposed method a series of ablation experiments were conducted using different module combinations. These results were then compared with those obtained through other object detection methods. This comparison reveals that the proposed method achieves a mean average precision of 67. 8% and an F1 -score of 86.0% in steel surface defect identification. When compared with the original YOLOv5 algorithm the proposed method exhibits superior performance particularly in the identification of small-scale steel surface defects. Furthermore it also surpasses other object detection methods such as SSD YOLOv3 YOLOv5-Lite and YOLOv8 demonstrating significant improvements in computational accuracy. © 2024 Southeast University. All rights reserved.
引用
收藏
页码:49 / 57
页数:8
相关论文
共 50 条
  • [21] Improved Plate Defect Detection Algorithm Based on YOLOv5
    Wang, Zijie
    Wang, Lan
    Zheng, Sihui
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 371 - 384
  • [22] Fabric defect detection algorithm based on improved YOLOv5
    Feng Li
    Kang Xiao
    Zhengpeng Hu
    Guozheng Zhang
    The Visual Computer, 2024, 40 : 2309 - 2324
  • [23] Insulator defect detection based on improved YOLOv5 algorithm
    Wang, Yongheng
    Li, Qin
    Liu, Yachong
    Wang, Chao
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 770 - 775
  • [24] Bearing defect detection based on the improved YOLOv5 algorithm
    Li, Kangning
    Jiao, Peigang
    Ding, Jiaming
    Du, Weibo
    PLOS ONE, 2024, 19 (10):
  • [25] Defect Detection for Metal Shaft Surfaces Based on an Improved YOLOv5 Algorithm and Transfer Learning
    Li, Bi
    Gao, Quanjie
    SENSORS, 2023, 23 (07)
  • [26] A method of identification and localization of tea buds based on lightweight improved YOLOV5
    Wang, Yuanhong
    Lu, Jinzhu
    Wang, Qi
    Gao, Zongmei
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [27] Carbonate Rock Fracture Identification Method Based on an Improved YOLOv5 Algorithm
    Jun Xie
    Renjie Gao
    Yuanpei Zhang
    Jianguo Zhang
    Yong Xia
    Yilin He
    Pure and Applied Geophysics, 2024, 181 : 189 - 201
  • [28] Carbonate Rock Fracture Identification Method Based on an Improved YOLOv5 Algorithm
    Xie, Jun
    Gao, Renjie
    Zhang, Yuanpei
    Zhang, Jianguo
    Xia, Yong
    He, Yilin
    PURE AND APPLIED GEOPHYSICS, 2024, 181 (01) : 189 - 201
  • [29] Surface Defect Detection Method of Wooden Spoon Based on Improved YOLOv5 Algorithm
    Tian, Siqing
    Li, Xiao
    Fang, Xiaolin
    Qi, Xiaozhong
    Li, Jichao
    BIORESOURCES, 2023, 18 (04) : 7713 - 7730
  • [30] Defect Identification of Adhesive Structure Based on DCGAN and YOLOv5
    Jin, Yong
    Gao, Huifang
    Fan, Xiaoliang
    Khan, Hassan
    Chen, Youxing
    IEEE ACCESS, 2022, 10 : 79913 - 79924