Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions

被引:0
|
作者
Hyttinen, Noora [1 ]
Pihlajamäki, Antti [2 ]
Häkkinen, Hannu [1 ,2 ]
机构
[1] Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä,FI-40014, Finland
[2] Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä,FI-40014, Finland
来源
Journal of Physical Chemistry Letters | 2022年 / 13卷 / 42期
关键词
36;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:9928 / 9933
相关论文
共 50 条
  • [21] A machine learning approach for predicting the nucleophilicity of organic molecules
    Saini, Vaneet
    Sharma, Aditya
    Nivatia, Dhruv
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (03) : 1821 - 1829
  • [22] Predicting Renal Toxicity of Compounds with Deep Learning and Machine Learning Methods
    Bitopan Mazumdar
    Pankaj Kumar Deva Sarma
    Hridoy Jyoti Mahanta
    SN Computer Science, 4 (6)
  • [23] Predicting Chemical Reaction Barriers with a Machine Learning Model
    Singh, Aayush R.
    Rohr, Brian A.
    Gauthier, Joseph A.
    Norskov, Jens K.
    CATALYSIS LETTERS, 2019, 149 (09) : 2347 - 2354
  • [24] Predicting Chemical Reaction Barriers with a Machine Learning Model
    Aayush R. Singh
    Brian A. Rohr
    Joseph A. Gauthier
    Jens K. Nørskov
    Catalysis Letters, 2019, 149 : 2347 - 2354
  • [25] Predicting glass transition temperature and melting point of organic compounds via machine learning and molecular embeddings
    Galeazzo, Tommaso
    Shiraiwa, Manabu
    ENVIRONMENTAL SCIENCE-ATMOSPHERES, 2022, 2 (03): : 362 - 374
  • [26] Predicting redox potentials by graph-based machine learning methods
    Jia, Linlin
    Bremond, Eric
    Zaida, Larissa
    Gauzere, Benoit
    Tognetti, Vincent
    Joubert, Laurent
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (28) : 2383 - 2396
  • [27] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Fedik, Nikita
    Zubatyuk, Roman
    Kulichenko, Maksim
    Lubbers, Nicholas
    Smith, Justin S.
    Nebgen, Benjamin
    Messerly, Richard
    Li, Ying Wai
    Boldyrev, Alexander, I
    Barros, Kipton
    Isayev, Olexandr
    Tretiak, Sergei
    NATURE REVIEWS CHEMISTRY, 2022, 6 (09) : 653 - 672
  • [28] Modelling chemical processes in explicit solvents with machine learning potentials
    Zhang, Hanwen
    Juraskova, Veronika
    Duarte, Fernanda
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [29] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Nikita Fedik
    Roman Zubatyuk
    Maksim Kulichenko
    Nicholas Lubbers
    Justin S. Smith
    Benjamin Nebgen
    Richard Messerly
    Ying Wai Li
    Alexander I. Boldyrev
    Kipton Barros
    Olexandr Isayev
    Sergei Tretiak
    Nature Reviews Chemistry, 2022, 6 : 653 - 672
  • [30] PREDICTING SUDDEN CARDIAC DEATH BY MACHINE LEARNING OF VENTRICULAR ACTION POTENTIALS
    Selvalingam, Anojan
    Alhusseini, Mahmood
    Rogers, Albert J.
    Krummen, David
    Abuzaid, Firas M.
    Baykaner, Tina
    Clopton, Paul
    Bailis, Peter
    Zaharia, Matei
    Wang, Paul
    Narayan, Sanjiv
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 427 - 427