Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions

被引:0
|
作者
Hyttinen, Noora [1 ]
Pihlajamäki, Antti [2 ]
Häkkinen, Hannu [1 ,2 ]
机构
[1] Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä,FI-40014, Finland
[2] Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä,FI-40014, Finland
来源
Journal of Physical Chemistry Letters | 2022年 / 13卷 / 42期
关键词
36;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:9928 / 9933
相关论文
共 50 条
  • [41] A machine learning approach for predicting the empirical polarity of organic solvents
    Saini, Vaneet
    Kumar, Ranjeet
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (35) : 16981 - 16989
  • [42] Data-driven, explainable machine learning model for predicting volatile organic compounds’ standard vaporization enthalpy
    Ferraz-Caetano J.
    Teixeira F.
    Cordeiro M.N.D.S.
    Chemosphere, 2024, 359
  • [43] Combination of machine learning and VIRS for predicting soil organic matter
    Zhenyu Dong
    Ni Wang
    Jinbao Liu
    Jiancang Xie
    Jichang Han
    Journal of Soils and Sediments, 2021, 21 : 2578 - 2588
  • [44] Effect of Different Factors on Predicting Constants of Acidity of Low-Molecular Organic Compounds by Means of Machine Learning
    Matyushin, D. D.
    Sholokhova, A. Yu.
    Buryak, A. K.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 97 (02) : 377 - 383
  • [45] Shedding light on "Black Box" machine learning models for predicting the reactivity of HO• radicals toward organic compounds
    Zhong, Shifa
    Zhang, Kai
    Wang, Dong
    Zhang, Huichun
    CHEMICAL ENGINEERING JOURNAL, 2021, 405
  • [46] Predicting aqueous sorption of organic pollutants on microplastics with machine learning
    Qiu, Ye
    Li, Zhejun
    Zhang, Tong
    Zhang, Ping
    WATER RESEARCH, 2023, 244
  • [47] Predicting lifespan-extending chemical compounds for C. elegans with machine learning and biologically interpretable features
    Ribeiro, Caio
    Farmer, Christopher K.
    de Magalhaes, Joao Pedro
    Freitas, Alex A.
    AGING-US, 2023, 15 (13): : 6073 - 6099
  • [48] Accessing thermal conductivity of complex compounds by machine learning interatomic potentials
    Korotaev, Pavel
    Novoselov, Ivan
    Yanilkin, Aleksey
    Shapeev, Alexander
    PHYSICAL REVIEW B, 2019, 100 (14)
  • [49] Predicting the stereoselectivity of chemical reactions by composite machine learning method
    Chung, Jihoon
    Li, Justin
    Saimon, Amirul Islam
    Hong, Pengyu
    Kong, Zhenyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Predicting chemical hazard across taxa through machine learning
    Wu, Jimeng
    D'Ambrosi, Simone
    Ammann, Lorenz
    Stadnicka-Michalak, Julita
    Schirmer, Kristin
    Baity-Jesi, Marco
    ENVIRONMENT INTERNATIONAL, 2022, 163