Single-Task Joint Learning Model for an Online Multi-Object Tracking Framework

被引:0
|
作者
Wang, Yuan-Kai [1 ]
Pan, Tung-Ming [2 ]
Hu, Chi-En [1 ]
机构
[1] Fu Jen Catholic Univ, Dept Elect Engn, New Taipei 242, Taiwan
[2] Fu Jen Catholic Univ, Grad Inst Appl Sci & Engn, Holist Educ Ctr, New Taipei 242, Taiwan
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 22期
关键词
multi-object tracking; single-task joint learning; cross-dataset training; feature extraction; tracker initialization; cosine distance; data association; occlusion handling;
D O I
10.3390/app142210540
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multi-object tracking faces critical challenges, including occlusions, ID switches, and erroneous detection boxes, which significantly hinder tracking accuracy in complex environments. To address these issues, this study proposes a single-task joint learning (STJL) model integrated into an online multi-object tracking framework to enhance feature extraction and model robustness across diverse scenarios. Employing cross-dataset training, the model has improved generalization capabilities and can effectively handle various tracking conditions. A key innovation is the refined tracker initialization strategy that combines detection and tracklet confidence, which significantly reduces the number of false positives and ID switches. Additionally, the framework employs a combination of Mahalanobis and cosine distances to optimize data association, further improving tracking accuracy. The experimental results demonstrate that the proposed model outperformed state-of-the-art methods on standard benchmark datasets, achieving superior MOTA and reduced ID switches, confirming its effectiveness in dynamic and occlusion-heavy environments.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Multi-object tracking based on improved Fairmot framework
    Xi, Yi-fan
    He, Li-ming
    Lyu, Yue
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2022, 37 (06) : 777 - 785
  • [42] A Framework to Combine Multi-Object Video Segmentation and Tracking
    Nadeem, Sehr
    Rahman, Anis
    Butt, Asad A.
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 525 - 531
  • [43] Multi-object model-free tracking with joint appearance and motion inference
    Liu, Chongyu
    Yao, Rui
    Rezatofighi, S. Hamid
    Reid, Ian
    Shi, Qinfeng
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 604 - 611
  • [44] Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking
    Li, Yizhe
    Zhou, Sanping
    Qin, Zheng
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    IEEE Transactions on Multimedia, 2024, 26 : 9515 - 9526
  • [45] Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking
    Li, Yizhe
    Zhou, Sanping
    Qin, Zheng
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    arXiv, 2023,
  • [46] Joint Object Detection and Multi-Object Tracking Based on Hypergraph Matching
    Cui, Zhoujuan
    Dai, Yuqi
    Duan, Yiping
    Tao, Xiaoming
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [47] Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
    Wang, Yongxin
    Kitani, Kris
    Weng, Xinshuo
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13708 - 13715
  • [48] DiffusionTrack: Diffusion Model For Multi-Object Tracking
    Luo, Run
    Song, Zikai
    Ma, Lintao
    Wei, Jinlin
    Yang, Wei
    Yang, Min
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 3991 - 3999
  • [49] Connected Component Model for Multi-Object Tracking
    He, Zhenyu
    Li, Xin
    You, Xinge
    Tao, Dacheng
    Tang, Yuan Yan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3698 - 3711
  • [50] Online Multi-Object Tracking via Labeled Random Finite Set with Appearance Learning
    Kim, Du Yong
    2017 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2017, : 181 - 186