Single-Task Joint Learning Model for an Online Multi-Object Tracking Framework

被引:0
|
作者
Wang, Yuan-Kai [1 ]
Pan, Tung-Ming [2 ]
Hu, Chi-En [1 ]
机构
[1] Fu Jen Catholic Univ, Dept Elect Engn, New Taipei 242, Taiwan
[2] Fu Jen Catholic Univ, Grad Inst Appl Sci & Engn, Holist Educ Ctr, New Taipei 242, Taiwan
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 22期
关键词
multi-object tracking; single-task joint learning; cross-dataset training; feature extraction; tracker initialization; cosine distance; data association; occlusion handling;
D O I
10.3390/app142210540
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multi-object tracking faces critical challenges, including occlusions, ID switches, and erroneous detection boxes, which significantly hinder tracking accuracy in complex environments. To address these issues, this study proposes a single-task joint learning (STJL) model integrated into an online multi-object tracking framework to enhance feature extraction and model robustness across diverse scenarios. Employing cross-dataset training, the model has improved generalization capabilities and can effectively handle various tracking conditions. A key innovation is the refined tracker initialization strategy that combines detection and tracklet confidence, which significantly reduces the number of false positives and ID switches. Additionally, the framework employs a combination of Mahalanobis and cosine distances to optimize data association, further improving tracking accuracy. The experimental results demonstrate that the proposed model outperformed state-of-the-art methods on standard benchmark datasets, achieving superior MOTA and reduced ID switches, confirming its effectiveness in dynamic and occlusion-heavy environments.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Joint detection and online multi-object tracking
    Kieritz, Hilke
    Huebner, Wolfgang
    Arens, Michael
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1540 - 1548
  • [2] DASOT: A Unified Framework Integrating Data Association and Single Object Tracking for Online Multi-Object Tracking
    Chu, Qi
    Ouyang, Wanli
    Liu, Bin
    Zhu, Feng
    Yu, Nenghai
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10672 - 10679
  • [3] Online Multi-object Tracking Based on Deep Learning
    Sun, Zheming
    Bo, Chunjuan
    Wang, Dong
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 33 - 40
  • [4] Multi-object Tracking by Joint Detection and Identification Learning
    Bo Ke
    Huicheng Zheng
    Lvran Chen
    Zhiwei Yan
    Ye Li
    Neural Processing Letters, 2019, 50 : 283 - 296
  • [5] Multi-object Tracking by Joint Detection and Identification Learning
    Ke, Bo
    Zheng, Huicheng
    Chen, Lvran
    Yan, Zhiwei
    Li, Ye
    NEURAL PROCESSING LETTERS, 2019, 50 (01) : 283 - 296
  • [6] Online Multi-Object Tracking based on Hierarchical Association Framework
    Ju, Jaeyong
    Kim, Daehun
    Ku, Bonhwa
    Ko, Hanseok
    Han, David K.
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 1273 - 1281
  • [7] A Unified Object Motion and Affinity Model for Online Multi-Object Tracking
    Yin, Junbo
    Wang, Wenguan
    Meng, Qinghao
    Yang, Ruigang
    Shen, Jianbing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6767 - 6776
  • [8] Online learning of Cascaded Classifier Designed for Multi-object Tracking
    Lin Yimin
    Lu Naiguang
    Lou Xiaoping
    Li Lili
    Zou Fang
    Yao Yanbin
    Du Zhaocai
    PROCEEDINGS OF 2013 IEEE 11TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2013, : 1045 - 1051
  • [9] Learning to Track: Online Multi-Object Tracking by Decision Making
    Xiang, Yu
    Alahi, Alexandre
    Savarese, Silvio
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4705 - 4713
  • [10] Robust multi-object tracking using deep learning framework
    Pang, Sh Ch
    Du, Anan
    Yu, Zh. Zh.
    JOURNAL OF OPTICAL TECHNOLOGY, 2015, 82 (08) : 516 - 527