Single-Task Joint Learning Model for an Online Multi-Object Tracking Framework

被引:0
|
作者
Wang, Yuan-Kai [1 ]
Pan, Tung-Ming [2 ]
Hu, Chi-En [1 ]
机构
[1] Fu Jen Catholic Univ, Dept Elect Engn, New Taipei 242, Taiwan
[2] Fu Jen Catholic Univ, Grad Inst Appl Sci & Engn, Holist Educ Ctr, New Taipei 242, Taiwan
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 22期
关键词
multi-object tracking; single-task joint learning; cross-dataset training; feature extraction; tracker initialization; cosine distance; data association; occlusion handling;
D O I
10.3390/app142210540
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multi-object tracking faces critical challenges, including occlusions, ID switches, and erroneous detection boxes, which significantly hinder tracking accuracy in complex environments. To address these issues, this study proposes a single-task joint learning (STJL) model integrated into an online multi-object tracking framework to enhance feature extraction and model robustness across diverse scenarios. Employing cross-dataset training, the model has improved generalization capabilities and can effectively handle various tracking conditions. A key innovation is the refined tracker initialization strategy that combines detection and tracklet confidence, which significantly reduces the number of false positives and ID switches. Additionally, the framework employs a combination of Mahalanobis and cosine distances to optimize data association, further improving tracking accuracy. The experimental results demonstrate that the proposed model outperformed state-of-the-art methods on standard benchmark datasets, achieving superior MOTA and reduced ID switches, confirming its effectiveness in dynamic and occlusion-heavy environments.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Online Multi-Object Tracking With Visual and Radar Features
    Bae, Seung-Hwan
    IEEE ACCESS, 2020, 8 (08): : 90324 - 90339
  • [32] ONLINE MULTI-OBJECT TRACKING WITH CONVOLUTIONAL NEURAL NETWORKS
    Chen, Long
    Ai, Haizhou
    Shang, Chong
    Zhuang, Zijie
    Bai, Bo
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 645 - 649
  • [33] Learning key lines for multi-object tracking
    Li, Yi-Fan
    Ji, Hong-Bing
    Chen, Xi
    Yang, Yong-Liang
    Lai, Yu-Kun
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [34] Robust Online Multi-Object Tracking based on Tracklet Confidence and Online Discriminative Appearance Learning
    Bae, Seung-Hwan
    Yoon, Kuk-Jin
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1218 - 1225
  • [35] AETrack: An Efficient Approach for Online Multi-Object Tracking
    Wang, Xurui
    Han, Yuxuan
    Liu, Qingxiao
    Li, Ji
    Wang, Boyang
    Liu, Haiou
    Chen, Huiyan
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 977 - 983
  • [36] Attention mechanics for improving online Multi-Object Tracking
    Minh Chuong Dang
    Duc Dung Nguyen
    2022 ASIA CONFERENCE ON ALGORITHMS, COMPUTING AND MACHINE LEARNING (CACML 2022), 2022, : 200 - 205
  • [37] Online multi-object tracking via robust collaborative model and sample selection
    Naiel, Mohamed A.
    Ahmad, M. Omair
    Swamy, M. N. S.
    Lim, Jongwoo
    Yang, Ming-Hsuan
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 154 : 94 - 107
  • [38] Online multi-object tracking: multiple instance based target appearance model
    Badal, Tapas
    Nain, Neeta
    Ahmed, Mushtaq
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (19) : 25199 - 25221
  • [39] Online multi-object tracking: multiple instance based target appearance model
    Tapas Badal
    Neeta Nain
    Mushtaq Ahmed
    Multimedia Tools and Applications, 2018, 77 : 25199 - 25221
  • [40] Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking
    Li, Yizhe
    Zhou, Sanping
    Qin, Zheng
    Wang, Le
    Wang, Jinjun
    Zheng, Nanning
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9515 - 9526